Overexpression of a phytochrome-regulated tandem zinc finger protein gene, OsTZF1, confers hypersensitivity to ABA and hyposensitivity to red light and far-red light in rice seedlings

文献类型: 外文期刊

第一作者: Zhou, Jinjun

作者: Zhou, Jinjun;Fan, Zhongxue;Xie, Xianzhi;Zhang, Cheng;Zhou, Jinjun;Fan, Zhongxue;Xie, Xianzhi;Zhang, Cheng;Ma, Huiquan;Zhang, Fang;Chen, Fan

作者机构:

关键词: Rice;Tandem zinc finger protein;Phytochrome;Photomorphogenesis;Hormone

期刊名称:PLANT CELL REPORTS ( 影响因子:4.57; 五年影响因子:4.463 )

ISSN: 0721-7714

年卷期: 2012 年 31 卷 7 期

页码:

收录情况: SCI

摘要: Tandem zinc finger proteins (TZFs) in plants are involved in gene regulation, developmental responses, and hormone-mediated environmental responses in Arabidopsis. However, little information about the functions of the TZF family in monocots has been reported. Here, we investigated a cytoplasmic TZF protein, OsTZF1, which is involved in photomorphogenesis and ABA responses in rice seedlings. The OsTZF1 gene was expressed at relatively high levels in leaves and shoots, although its transcripts were detected in various organs. Red light (R)- and far-red light (FR)-mediated repression of OsTZF1 gene expression was attributed to phytochrome B (phyB) and phytochrome C (phyC), respectively. In addition, OsTZF1 expression was regulated by salt, PEG, and ABA. Overexpression of OsTZF1 caused a long leaf sheath relative to wild type (WT) under R and FR, suggesting that OsTZF1 probably acts as a negative regulator of photomorphogenesis in rice seedlings. Moreover, ABA-induced growth inhibition of rice seedlings was marked in the OsTZF1-overexpression lines compared with WT, suggesting the positive regulation of OsTZF1 to ABA responses. Genome-wide expression analysis further revealed that OsTZF1 also functions in other hormone or stress responses. Our findings supply new evidence on the functions of monocot TZF proteins in phytochrome-mediated light and hormone responses. Key message OsTZF1 encodes a cytoplasm-localized tandem zinc finger protein and is regulated by both ABA and phytochrome-mediated light signaling. OsTZF1 functions in phytochrome-mediated light and ABA responses in rice.

分类号:

  • 相关文献

[1]Overexpression of an S-like ribonuclease gene, OsRNS4, confers enhanced tolerance to high salinity and hyposensitivity to phytochrome-mediated light signals in rice. Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Li, Yaping,Liu, Qianqian,Xie, Xianzhi,Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Xie, Xianzhi. 2014

[2]Overexpression of OsPIL15, a phytochromeinteracting factor- like protein gene, represses etiolated seedling growth in rice. Zhou, Jinjun,Liu, Qianqian,Wang, Yingying,Zhang, Shiyong,Cheng, Huimin,Yan, Lihua,Li, Li,Xie, Xianzhi,Zhou, Jinjun,Wang, Yingying,Zhang, Shiyong,Xie, Xianzhi,Liu, Qianqian,Xie, Xianzhi,Zhang, Fang,Chen, Fan. 2014

[3]Molecular mechanism of adventitious root formation in rice. Zhi-Guo, E.,Ge, Lei,Wang, Lei,Wang, Lei.

[4]A comparative study of stress-related gene expression under single stress and intercross stress in rice. Zhang, Y. P.,E, Z. G.,Wang, L.,Zhu, D. F.,Jiang, H.,Zhou, J.. 2015

[5]Genome-Wide Identification, Classification, and Expression Analysis of Autophagy-Associated Gene Homologues in Rice (Oryza sativa L.). Xia, Kuaifei,Liu, Tao,Wang, Ren,Fan, Tian,Zhang, Mingyong,Xia, Kuaifei,Liu, Tao,Wang, Ren,Fan, Tian,Ouyang, Jie. 2011

[6]THE EFFECTS OF 2IP AND 2,4-D ON RICE CALLI DIFFERENTIATION. Zhu, YX,Ouyang, WJ,Li, Y,Chen, ZL.

[7]Regulatory modules controlling early shade avoidance response in maize seedlings. Wang, Hai,Wu, Guangxia,Zhao, Binbin,Wang, Baobao,Lang, Zhihong,Zhang, Chunyi,Wang, Haiyang. 2016

[8]Phytochromes Regulate SA and JA Signaling Pathways in Rice and Are Required for Developmentally Controlled Resistance to Magnaporthe grisea. Xie, Xian-Zhi,Xue, Yan-Jiu,Zhou, Jin-Jun,Zhang, Bin,Xie, Xian-Zhi,Zhou, Jin-Jun,Zhang, Bin,Xue, Yan-Jiu,Chang, Hong,Takano, Makoto.

[9]The phytochrome gene family in soybean and a dominant negative effect of a soybean PHYA transgene on endogenous Arabidopsis PHYA. Wu, Fa-Qiang,Fan, Cheng-Ming,Zhang, Xiao-Mei,Fu, Yong-Fu. 2013

[10]Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings. Zheng, Yuyu,Zhu, Ziqiang,Cui, Xuefei,Gong, Qingqiu,Su, Liang,Yang, Jianping,Fang, Shuang,Chu, Jinfang. 2017

[11]BZS1, a B-box Protein, Promotes Photomorphogenesis Downstream of Both Brassinosteroid and Light Signaling Pathways. Bai, Ming-Yi,Wang, Zhi-Yong,Fan, Xi-Ying,Cao, Dong-Mei,Luo, Xiao-Min,Yang, Hong-Juan,Zhu, Sheng-Wei,Chong, Kang,Fan, Xi-Ying,Sun, Yu,Wei, Chuang-Qi,Sun, Ying,Cao, Dong-Mei,Fan, Xi-Ying. 2012

[12]Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms. Liu, Hongtao,Liu, Yawen,Liu, Hongtao,Wang, Qin,Tobin, Elaine M.,Lin, Chentao,Wang, Qin,Zhao, Xiaoying,Zhao, Xiaoying,Imaizumi, Takato,Somers, David E..

[13]Phytochrome Signaling: Time to Tighten up the Loose Ends. Wang, Hai,Wang, Haiyang. 2015

[14]Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Liu, Bin,Zuo, Zecheng,Liu, Hongtao,Lin, Chentao,Liu, Bin,Zuo, Zecheng,Liu, Xuanming. 2011

[15]Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. Liu, Bobin,Yang, Zhaohe,Oka, Yoshito,Liu, Bobin,Gomez, Adam,Liu, Bin,Lin, Chentao.

[16]Transcriptome Analysis of Calcium and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development. Li, Yan,Meng, Jingjing,Yang, Sha,Guo, Feng,Zhang, Jialei,Geng, Yun,Cui, Li,Li, Xinguo,Wan, Shubo. 2017

[17]Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. Gao, Chao,Wang, Pengfei,Zhao, Shuzhen,Zhao, Chuanzhi,Xia, Han,Hou, Lei,Zhang, Ye,Li, Changsheng,Wang, Xingjun,Wang, Xingjun,Ju, Zheng. 2017

[18]The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Lingling Wang,Chen, Guoping,Zongli Hu,Mingku Zhu,Zhiguo Zhu,Jingtao Hu,Ghulam Qanmber,Guoping Chen.

[19]Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. Min Lin,Chaoyou Pang,Shuli Fan,Meizhen Song,Hengling Wei,Shuxun Yu. 2015

[20]iTRAQ Protein Profile Differential Analysis between Somatic Globular and Cotyledonary Embryos Reveals Stress, Hormone, and Respiration Involved in Increasing Plant let Regeneration of Gossypium hirsutum L.. Xiaoyang Ge,Chaojun Zhang,Qianhua Wang,Zuoren Yang,Ye Wang,Xueyan Zhang,Zhixia Wu,Yuxia Hou,Jiahe Wu,Fuguang Li.

作者其他论文 更多>>