Effects of genotypes and plant density on yield, yield components and photosynthesis in Bt transgenic cotton

文献类型: 外文期刊

第一作者: Dong, HZ

作者: Dong, HZ;Li, WJ;Tang, W;Li, ZH;Zhang, DM

作者机构:

关键词: Bt cotton;genotype;lint yield;photosynthesis;plant density

期刊名称:JOURNAL OF AGRONOMY AND CROP SCIENCE ( 影响因子:3.473; 五年影响因子:4.395 )

ISSN: 0931-2250

年卷期: 2006 年 192 卷 2 期

页码:

收录情况: SCI

摘要: Bt (Bacillus thuringiensis) transgenic cotton (Gossypium hirsutum L.), including the introduced, indigenous Chinese non-hybrid and hybrid cotton, is spreading very rapidly in China. Agronomic and photosynthetic performance as well as the optimum plant density for planting Bt cotton may vary with genotypes. With three types of commercial Bt cotton varieties, two field experiments were conducted to study yield performance and leaf photosynthetic rate (Pn) during 2000 and 2001, and yield interaction between variety and plant density during 2001 and 2002 in Yellow River region in northern China. The first experiment showed that the indigenous Chinese Bt cotton significantly differed from the introduced Bt cotton (IBtC) in plant growth and yield components. As a result of manipulation of boll numbers, boll weight and lint percentage, there was no significant difference in lint yield between Chinese non-hybrid Bt cotton (CBtC) and the IBtC, but two Chinese hybrid Bt cotton (HBtC) varieties exhibited significantly higher lint yield than all other varieties in either 2000 or 2001. Hybrid cotton SCRC15 showed a one-peak curvilinear change in diurnal course of Pn throughout the growing season, while non-hybrid cotton 33B and SCRC16 exhibited severe mid-day depression in Pn in squaring, flowering or boll-setting stage. The second experiment showed that the main effect of plant population on lint yield was not significant, and yield difference among all treatments was derived from varieties and the interaction between plant density and variety. The optimal plant densities in terms of lint yield for the introduced, indigenous CBtC and HBtC genotypes were 6.0, 4.5 and 3.0 plants m(-2) respectively.

分类号:

  • 相关文献

[1]Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Dong, Hezhong,Li, Weijiang,Eneji, A. Egrinya,Zhang, Dongmei,Eneji, A. Egrinya. 2012

[2]Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Zhang, Dongmei,Li, Weijiang,Xin, Chengsong,Tang, Wei,Eneji, A. Egrinya,Dong, Hezhong,Eneji, A. Egrinya. 2012

[3]Growth, yield and quality of wheat and cotton in relay strip intercropping systems. L.Zhang,L.Zhang,W.van der Werf. 2007

[4]Effect of late planting and shading on cotton yield and fiber quality formation. Liu, Jingran,Meng, Yali,Chen, Ji,Lv, Fengjuan,Ma, Yina,Chen, Binglin,Wang, Youhua,Zhou, Zhiguo,Liu, Jingran,Oosterhuis, Derrick M..

[5]Fruiting-branch removal enhances endotoxin expression and lint yield in Bt cotton. Zhang, Dongmei,Dong, Hezhong,Li, Weijiang,Tang, Wei.

[6]Dead mycelium of Penicillium chrysogenum protects transplanted cotton plants agains fungal wilts in a saline field. Zhang, H. J.,Dong, H. Z.,Li, W. J.,Zhang, H. J.,Dong, H. Z.,Li, W. J..

[7]Analysis of decision-making coefficients of the lint yield of upland cotton (Gossypium hirsutum L.). Yongjun Mei,Weifeng Guo,Shuli Fan,Meizhen Song,Chaoyou Pang,Shuxun Yu.

[8]Development and validation of SUCROS-Cotton: a potential crop growth simulation model for cotton. Zhang, L.,Van Der Werf, W.,Spiertz, J. H. J.,Zhang, L.,Li, B.,Pan, X.,Cao, W.,Zhang, L.. 2008

[9]Effects of Soil Salinity and Plant Density on Yield and Leaf Senescence of Field-Grown Cotton. Zhang, H. J.,Dong, H. Z.,Li, W. J.,Zhang, D. M.,Zhang, H. J.. 2012

[10]Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Dong, HZ,Li, WJ,Tang, W,Li, ZH,Zhang, DM,Niu, YH. 2006

[11]Effects of planting system, plant density and flower removal on yield and quality of hybrid seed in cotton. Dong, HZ,Zhang, DM,Tang, W,Li, WJ,Li, ZH. 2005

[12]Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Dong, Hezhong,Kong, Xiangqiang,Li, Weijiang,Tang, Wei,Zhang, Dongmei. 2010

[13]Identification of plant configurations maximizing radiation capture in relay strip cotton using a functional-structural plant model. Lili Mao,Lizhen Zhang,Jochem B. Evers,Michael Henke,Wopke van der Werf,Shaodong Liu,Siping Zhang,Xinhua Zhao,Baomin Wang,Zhaohu Li.

[14]Effects of Irrigation and Plant Density on Cotton Within-Boll Yield Components. Lu Feng,Vinicius B. Bufon,Cory I. Mills,Eric Hequet,James P. Bordovsky,;Wayne Keeling,Randy Boman,Craig W. Bednarz.

[15]Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.). Zhang, Shujie,Liao, Xing,Zhang, Chunlei,Xu, Huajun. 2012

[16]Response of grain yield to plant density and nitrogen rate in spring maize hybrids released from 1970 to 2010 in Northeast China. Qian, Chunrong,Yu, Yang,Gong, Xiujie,Jiang, Yubo,Zhao, Yang,Yang, Zhongliang,Hao, Yubo,Li, Liang,Song, Zhenwei,Zhang, Weijian. 2016

[17]Monitoring the Plant Density of Cotton with Remotely Sensed Data. Bai, Junhua,Li, Shaokun,Bai, Junhua,Li, Jing,Bai, Junhua. 2011

[18]Integration of cropping practices and herbicides improves weed management in dry bean (Phaseolus vulgaris). Blackshaw, RE,Molnar, LJ,Muendel, HH,Saindon, G,Li, XJ. 2000

[19]NITROGEN DOSES AND PLANT DENSITY AFFECT PHENOLOGY AND YIELD OF SWEET CORN. Khan, Zafar Hayat,Khalil, Shad Khan,Khan, Zafar Hayat,Iqbal, Amjad,Shah, Farooq,Iqbal, Amjad,Ullah, Ikram,Ali, Muhammad,Shah, Tariq,Wu, Wei. 2017

[20]Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton. Zhang, Dongmei,Luo, Zhen,Li, Weijiang,WeiTang,Dong, Hezhong,Liu, Suhua.

作者其他论文 更多>>