The Commelina Yellow Mottle Virus promoter is a strong promoter in vascular tissue of transgenic Gossypium hirsutum plants

文献类型: 外文期刊

第一作者: Yuan, ZQ

作者: Yuan, ZQ;Wu, JH;Wu, B;Li, YE;Chen, ZX;Li, SJ;Tian, YC

作者机构:

关键词: transgenic cotton plant;Commelina Yellow Mottle Virus (CoYMV) promoter;vascular tissue;GUS

期刊名称:ACTA BOTANICA SINICA ( 影响因子:0.599; )

ISSN: 0577-7496

年卷期: 2000 年 42 卷 11 期

页码:

收录情况: SCI

摘要: Explants of cotton ( Gossypium hirsutum L. cv. Jingmian 7) were transformed with Agrobacterium tumefaciens (Smith et Townsend) Conn LBA4404 harboring an expression cassette composed of CoYMV ( Commelina Yellow Mottle Virus) promoter-gus-nos terminator on the plant expression vector pBcopd2. Transgenic plants were regenerated and selected on a medium containing kanamycin. GUS (beta -glucuronidase) activity assays and Southern blot analysis confirmed that the chimerical gus gene was integrated into and expressed in the regenerated cotton plants. Plant expression vector pBI121 was also transferred into the same cotton variety and the regenerated transgenic plants were used as a positive control in GUS activity analysis, Evidences from histochemical analysis of GUS activity demonstrated that under the control of a 597 Lp CoYMV promoter the gus gene was highly expressed in the vascular tissues of leaves, petioles, stems, roots, hypocotyls, bracteal leaves and most of the flower parts while GUS activity could not be detected in stigma, anther sac and developing cotton fibers of the transgenic cotton plants. GUS specific activity in various organs and tissues from transgenic cotton lines was determined and the results indicated that the CoYMV promoter-gus activities were at the same level or higher than that of CaMV 35S promoter-gus in leaf veins and roots where the vascular tissues occupy a relatively larger part of the organs, but in other organs like leaves, cotyledons and hypocotyls where the vascular tissues occupy a smaller part of the organs the CoYMV promoter-gus activity was only 1/3 - 1/5 of the CaMV 35S promoter-gus activity. The GUS activity ratio between veins and leaves was averaged 0.5 for 35S-GUS plants and about 2.0 for CoYMV promoter-gus transgenic plants. These results further demonstrated the vascular specific property of the promoter in transgenic cotton plants, An increasing trend of GUS activity in leaf vascular tissues of transgenic cotton plants developing from young to older was observed.

分类号:

  • 相关文献

[1]INTERACTIVE EFFECTS OF SALINITY AND PROLINE ON RICE AT THE ULTRASTRUCTURAL LEVEL. Sha, Han-Jing,Hu, Wen-Cheng,Jia, Yan,Liu, Hua-Long,Wang, Jing-Guo,Zou, De-Tang,Zhao, Hong-Wei,Chang, Hui-Lin. 2017

[2]A 796 bp PsPR10 gene promoter fragment increased root-specific expression of the GUS reporter gene under the abiotic stresses and signal molecules in tobacco. Xu, Xiangbin,Guo, Sai,Chen, Kai,Liu, Junjun,Wang, Huizhong,Song, Hongmiao,Liu, Junjun,Guo, Longbiao,Qian, Qian.

[3]Activation of three pathogen-inducible promoters in transgenic citrus (Citrus sinensis Osbeck) after Xanthomonas axonopodis pv. citri infection and wounding. Zou, Xiuping,Song, Erling,Peng, Aihong,He, Yongrui,Xu, Lanzhen,Lei, Tiangang,Yao, Lixiao,Chen, Shanchun,Zou, Xiuping,Peng, Aihong,He, Yongrui,Xu, Lanzhen,Lei, Tiangang,Yao, Lixiao,Chen, Shanchun.

[4]Expression of a novel bi-directional Brassica napus promoter in soybean. Chennareddy, Siva,Cicak, Toby,Clark, Lauren,Russell, Sean,Skokut, Michiyo,Beringer, Jeffrey,Jia, Yi,Gupta, Manju,Yang, Xiaozeng.

[5]Efficient regeneration and genetic transformation platform applicable to five Musa varieties. Liu, Juhua,Gao, Pengzhao,Zhang, Jing,Jia, Caihong,Zhang, Jianbin,Hu, Wei,Xu, Biyu,Jin, Zhiqiang,Sun, Peiguang,Wang, Jiashui,Jin, Zhiqiang,Sun, Xiuxiu. 2017

[6]Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Yang, LT,Ding, JY,Zhang, CM,Jia, JW,Weng, HB,Liu, WX,Zhang, DB. 2005

[7]GmPRP2 promoter drives root-preferential expression in transgenic Arabidopsis and soybean hairy roots. Chen, Li,Jiang, Bingjun,Wu, Cunxiang,Sun, Shi,Hou, Wensheng,Han, Tianfu. 2014

[8]Isolation and characterization of Calcineurin B-like gene (PbCBL1) and its promoter in birch-leaf pear (Pyrus betulifolia Bunge). Xu, Y. Y.,Li, H.,Lin, J.,Li, X. G.,Chang, Y. H.. 2015

[9]A novel constitutive promoter and its downstream 5 ' UTR derived from cotton (Gossypium spp.) drive high-level gene expression in stem and leaf tissues. Sun Bao,Sun Guo-qing,Meng Zhi-gang,Zhang Rui,Guo San-dui. 2016

[10]Isolation of a maize beta-glucosidase gene promoter and characterization of its activity in transgenic tobacco. Gu, Riliang,Zhao, Li,Zhang, Ying,Chen, Xiaoping,Bao, Juan,Zhao, Jinfeng,Wang, Zhangying,Fu, Junjie,Liu, Tingsong,Wang, Jianhua,Wang, Guoying. 2006

[11]The characterization of GmTIP, a root-specific gene from soybean, and the expression analysis of its promoter. Chen, Li,Jiang, Bingjun,Wu, Cunxiang,Sun, Shi,Hou, Wensheng,Han, Tianfu.

[12]Isolation of a maize ZmCI-1B promoter and characterization of its activity in transgenic maize and tobacco. Li, Ye,Liu, Xiaoqing,Zhou, Xiaojin,Yang, Wenzhu,Chen, Rumei,Li, Jie,Li, Suzhen,Chen, Guanyu.

[13]Multiple tissue-specific expression of rice seed-shattering gene SH4 regulated by its promoter pSH4. Yan, Huanxin,Ma, Li,Wang, Zhe,Lu, Bao-Rong,Lin, Zhimin,Su, Jun. 2015

作者其他论文 更多>>