Identification and validation of a novel major QTL for harvest index in rice (Oryza sativa L.)

文献类型: 外文期刊

第一作者: Zhang, Shaohong

作者: Zhang, Shaohong;He, Xiuying;Zhao, Junliang;Cheng, Yongsheng;Chen, Yuehan;Yang, Tifeng;Dong, Jingfang;Wang, Xiaofei;Liu, Qing;Liu, Wei;Mao, Xingxue;Fu, Hua;Chen, Zhaoming;Liao, Yaoping;Liu, Bin;Zhang, Shaohong;He, Xiuying;Zhao, Junliang;Cheng, Yongsheng;Chen, Yuehan;Yang, Tifeng;Dong, Jingfang;Wang, Xiaofei;Liu, Qing;Liu, Wei;Mao, Xingxue;Fu, Hua;Chen, Zhaoming;Liao, Yaoping;Liu, Bin;Xie, Zhimei;Xie, Zhimei

作者机构:

关键词: Rice (Oryza sativa L.);Harvest index;Grain yield;Biomass;Quantitative trait locus (QTL);Mapping;Validation

期刊名称:RICE ( 影响因子:4.783; 五年影响因子:5.23 )

ISSN: 1939-8425

年卷期: 2017 年 10 卷

页码:

收录情况: SCI

摘要: Background: Harvest index (HI) in rice is defined as the ratio of grain yield (GY) to biomass (BM). Although it has been demonstrated that HI is significantly related to yield and is considered as one of the most important traits in high-yielding rice breeding, HI-based high-yielding rice breeding is difficult due to its polygenic nature and insufficient knowledge on the genetic basis of HI. Therefore, searching for rice varieties with high HI and mapping genes associated with high HI can facilitate marker-assisted breeding for high HI in rice. Results: Yuexiangzhan, a popular indica cultivar with good reputation of high HI was crossed with Shengbasimiao, an indica cultivar with lower HI to develop a recombinant inbred line population, and QTL mapping for HI and its component traits was conducted. In total, five QTLs for HI, three QTLs for GY, and six QTLs for BM were detected in two-year experiments. Among the three GY QTLs, one co-located with the HI QTL on chromosome 8, while the other two co-located with the two tightly-linked BM QTLs on chromosome 3. The co-located QTLs in each of the chromosomal regions produced additive effects in the same direction. Particularly, the HI QTL on chromosome 8, qHI-8, could be detected across two years and explained 42.8% and 44.5% of the phenotypic variation, respectively. The existence of qHI-8 was confirmed by the evaluation of the near isogenic lines derived from a residual heterozygous line, and this QTL was delimitated to a 1070 kb interval by substitution mapping. Conclusion: In the present study, the detected GY QTLs overlapped with both HI QTL and BM QTL, suggesting a positive relationship between GY and HI or BM, respectively. With an understanding of the genetic basis for grain yield, harvest index and biomass, it is possible to achieve higher yield through enhancing HI and BM by pyramiding the favorable alleles for the two traits via marker-assisted selection (MAS). As qHI-8 has a large phenotypic effect on HI and expresses stably in different environments, it provides a promising target for further genetic characterization of HI and MAS of high HI in rice breeding.

分类号:

  • 相关文献

[1]Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades: A case study in the North China Plain. Zhang, Xiying,Sun, Hongyong,Chen, Suying,Shao, Liwei,Liu, Xiuwei,Wang, Shufen.

[2]Relationship between yield, carbon isotope discrimination and stem carbohydrate concentration in spring wheat grown in Ningxia Irrigation Region (North-west China). Zhu, Lin,Xu, Xing,Zhu, Lin,Liang, Zong Suo,Zhu, Lin,Li, Shu Hua,Xu, Xing,Zhang, Zhan Feng. 2010

[3]Evidences for the association between carbon isotope discrimination and grain yield-Ash content and stem carbohydrate in spring wheat grown in Ningxia (Northwest China). Zhu, Lin,Liang, Zong Suo,Xu, Xing,Zhu, Lin,Xu, Xing,Zhu, Lin,Li, Shu Hua,Monneveux, P.. 2009

[4]Influence of the system of rice intensification on rice yield and nitrogen and water use efficiency with different N application rates. Zhao, Limei,Wu, Lianghuan,Lu, Xinghua,Zhao, Limei,Li, Yongshan,Zhu, Defeng,Uphoff, Norman.

[5]Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Xia, X. C.,He, Z. H.,Zheng, T. C.,Yin, G. H.,Wang, L. N.,Han, Y. L.,Huang, F.,Tang, J. W.,Zhang, X. K.,Chen, L.,He, Z. H..

[6]QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Xu, Yun-Feng,Ma, Fei-Fei,Xu, Hong-Xing,Ma, Peng-Tao,An, Diao-Guo,Xu, Yun-Feng,Ma, Fei-Fei,Xu, Hong-Xing,Ma, Peng-Tao,An, Diao-Guo,Li, Si-Shen,Li, Si-Shen,Li, Li-Hui,Fu, Xiao-Yi,Shi, Zhan-Liang. 2017

[7]Genetic dissection of silicon uptake ability in rice (Oryza sativa L.). Wu, Q. -S.,Wan, X. -Y.,Su, N.,Cheng, Z. -J.,Wang, J. -K.,Lei, C. -L.,Zhang, X.,Jiang, L.,Ma, J. -F.,Wan, J. -M..

[8]Fine mapping of qHUS6.1, a quantitative trait locus for silicon content in rice (Oryza sativa L.). Gong JunYi,Wu JiRong,Wang Kai,Fan YeYang,Zhuang JieYun. 2010

[9]Genetic dissection of seed storability using two different populations with a same parent rice cultivar N22. Lin, Qiuyun,Wang, Wenyan,Ren, Yakun,Jiang, Yimei,Sun, Ailing,Qian, Ying,Zhang, Yifei,He, Niqing,Ngo Thi Hang,Liu, Zhou,Li, Linfang,Liu, Linglong,Jiang, Ling,Wan, Jianmin,Wan, Jianmin.

[10]Mapping and candidate gene analysis for a new top spikelet abortion mutant in rice. Jiang, Shukun,Zhang, Xijuan,Sun, Shichen,Jiang, Hui,Ding, Guohua,Wang, Tongtong,Bai, Liangming,Zhang, Fengming,Wang, Jiayu,Liu, Dan,Chen, Lili,Xu, Fan,Xu, Zhengjin.

[11]Biomass-Based Rice (Oryza sativa L.) Aboveground Architectural Parameter Models. Cao Hong-xin,Liu Yan,Liu Yong-xia,Yue Yan-bin,Zhu Da-wei,Shi Chun-lin,Ge Dao-kuo,Wei Xiu-fang,Hanan, Jim Scott,Yue Yan-bin,Lu Jian-fei,Sun Jin-ying,Yao An-qing,Tian Ping-ping,Bao Tai-lin. 2012

[12]Loss of function of OsMADS34 leads to large sterile lemma and low grain yield in rice (Oryza sativa L.). Zhang, Yu,Yu, Haiping,Liu, Jin,Wang, Wei,Sun, Jian,Gao, Qi,Ma, Dianrong,Wang, Jiayu,Xu, Zhengjin,Chen, Wenfu,Zhang, Yu,Yu, Haiping,Liu, Jin,Wang, Wei,Sun, Jian,Gao, Qi,Ma, Dianrong,Wang, Jiayu,Xu, Zhengjin,Chen, Wenfu,Zhang, Yanhong.

[13]Density responses and spatial distribution of cotton yield and yield components in jujube (Zizyphus jujube)/cotton (Gossypium hirsutum) agroforestry. Qi Wang,Shuo Han,Lizhen Zhang,Dongsheng Zhang,Wopke van der Werf,Jochem B. Evers,Hongquan Sun,Zhicheng Su,Siping Zhang.

[14]Comparison of high-yield rice in tropical and subtropical environments - I. Determinants of grain and dry matter yields. Ying, JF,Peng, SB,He, QR,Yang, H,Yang, CD,Visperas, RM,Cassman, KG. 1998

[15]FIELD EVALUATION ON WATER PRODUCTIVITY OF WINTER WHEAT UNDER SPRINKLER OR SURFACE IRRIGATION IN THE NORTH CHINA PLAIN. Liu, Hai-Jun,Kang, Yaohu,Yao, Su-Mei,Sun, Ze-Qiang,Liu, Shi-Ping,Wang, Qing-Gai,Sun, Ze-Qiang. 2013

[16]Developing rice cultivars for high-fertility upland systems in the Asian tropics. Atlin, GN,Lafitte, HR,Tao, D,Laza, A,Amante, A,Courtois, B. 2006

[17]EXTRACTING SPATIAL INFORMATION OF HARVEST INDEX FOR WINTER WHEAT BASED ON MODIS NDVI IN NORTH CHINA. Ren, Jianqiang,Chen, Zhongxin,Tang, Huajun,Ren, Jianqiang,Chen, Zhongxin,Tang, Huajun,Liu, Xingren. 2010

[18]Maize grain concentrations and above-ground shoot acquisition of micronutrients as affected by intercropping with turnip, faba bean, chickpea, and soybean. Xia HaiYong,Xue YanFang,Zhang FuSuo,Li Long,Zhao JianHua,Sun JianHao,Bao XingGuo,Eagling, Tristan. 2013

[19]Genotypic Variationin Nitrogen Utilization Efficiency of Oilseed Rape (Brassica napus) Under Contrasting N Supply in Pot and Field Experiments. He, Huiying,Yang, Rui,Li, Yajun,Ma, Aisheng,Cao, Lanqin,Tian, Hui,Gao, Yajun,Wu, Xiaoming,Chen, Biyun,Gao, Yajun. 2017

[20]Genetic improvement of wheat yield potential in north China. He, Z. H.,Zhou, Y.,He, Z. H.,Chen, X. M.,Wang, D. S.,Yan, J.,Xia, X. C.,Zhang, Y.. 2007

作者其他论文 更多>>