Rapid identification of rice blast resistance gene by specific length amplified fragment sequencing

文献类型: 外文期刊

第一作者: Chen, Shen

作者: Chen, Shen;Wang, Wen-juan;Su, Jing;Wang, Cong-ying;Feng, Ai-qing;Yang, Jian-yuan;Zeng, Lie-xian;Zhu, Xiao-yuan

作者机构:

关键词: Rice blast;resistance gene;gene identification;SLAF-seq

期刊名称:BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT ( 影响因子:1.632; 五年影响因子:2.029 )

ISSN: 1310-2818

年卷期: 2016 年 30 卷 3 期

页码:

收录情况: SCI

摘要: Excavation of resistance genes is one of the most effective and environment-friendly measures to control the devastating rice disease caused by Magnaporthe oryzae. Many resistance genes have been mapped and characterized in the last century. Nevertheless, only a few of the total resistance genes could be really applied in the rice breeding program. Huazhan (HZ) is a new native rice restorer line developed in China and widely used in hybrid rice in recent years. HZ and its crossed combinations usually show a broad spectrum of resistance against rice blast in different rice ecosystems in China. Dissection of the genetic background of HZ is very useful for its further application. In this study, a combined method based on bulked segregation analysis (BSA) and specific length amplified fragment sequencing (SLAF-seq) was used to identify blast resistance gene(s) in HZ. A total of 56,187 SLAFs labels were captured and 9051 polymorphic SLAFs markers were analysed and procured in this study. One trait associated with candidate resistance genes region on chromosome 12 overlapping 10.2-17.6 Mb has been identified, in which 10 NBS-LRR (nucleotide-binding site-leucine-rich repeat) coding genes were used as resistance gene candidates. Our result indicated that SLAF-seq with BSA is a rapid and effective method for initial identification of blast resistance genes. The identification of resistance gene in HZ will improve its molecular breeding and resistance variety application.

分类号:

  • 相关文献

[1]Analysis of a major rice blast resistance gene in the rice restorer line Hanghui 1179. Zhou, Jiyong,Xiao, Wuming,Chen, Zhiqiang,Wang, Wenjuan,Feng, Aiqing,Zhu, Xiaoyuan,Chen, Shen,Zhou, Jiyong.

[2]Pyramiding of Pi46 and Pita to improve blast resistance and to evaluate the resistance effect of the two R genes. Xiao Wu-ming,Luo Li-xin,Wang Hui,Guo Tao,Liu Yong-zhu,Zhou Ji-yong,Chen Zhi-qiang,Zhu Xiao-yuan,Yang Qi-yun. 2016

[3]Resistance spectrum assay and fine mapping of the blast resistance gene from a rice experimental line, IRBLta2-Re. Chen, Shen,Wang, Xiaojing,Yang, Chengwei,Chen, Shen,Su, Jing,Han, Jingluan,Wang, Wenjuan,Wang, Congying,Yang, Jianyuan,Zeng, Liexian,Zhu, Xiaoyuan,Chen, Shen,Su, Jing,Han, Jingluan,Wang, Wenjuan,Wang, Congying,Yang, Jianyuan,Zeng, Liexian,Zhu, Xiaoyuan. 2014

[4]A B-lectin receptor kinase gene conferring rice blast resistance. Chen, Xuewei,Shang, Junjun,Chen, Dexi,Lei, Cailin,Zou, Yan,Zhai, Wenxue,Liu, Guozhen,Xu, Jichen,Ling, Zhongzhuan,Cao, Gang,Ma, Bingtian,Wang, Yuping,Zhao, Xianfeng,Li, Shigui,Zhu, Lihuang. 2006

[5]Influences of the disease resistance conferred by the individual transgenes, Pi-d2, Pi-d3 and Xa21, on the transgenic rice plants in yield and grain quality. Hao, Z. N.,Wang, L. P.,Tao, R. X.,Wang, J.,Wang, J.. 2009

[6]Identification of three major R genes responsible for broad-spectrum blast resistance in an indica rice accession. Xiao, Wuming,Sun, Dayuan,Wang, Hui,Guo, Tao,Liu, Yongzhu,Chen, Zhiqiang,Yang, Qiyun,Zhu, Xiaoyuan.

[7]Identification of SSR markers for a broad-spectrum blast resistance gene Pi20(t) for marker-assisted breeding. Wan, Jianmin,Li, Wei,Jia, Yulin. 2008

[8]Identification and sequence analysis of aroA gene of avibacterium paragallinarum. Lv, Xue-Ze,Wang, Hong-Jun,Chen, Xiao-Ling,Gong, Yu-Mei,Liang, Yu-Rong,He, Yun-Xia,Zhang, Pei-Jun. 2016

[9]Identification and Characterization of 12 Mitogen-activated Protein Kinase Genes Implicated in Stress Responses in Cherry Rootstocks. Zong, Xiaojuan,Wang, Jiawei,Xu, Li,Wei, Hairong,Chen, Xin,Zhu, Dongzi,Tan, Yue,Liu, Qingzhong.

[10]Systematic identification of seven ribosomal protein genes in bighead carp and their expression in response to microcystin-LR. Cai, Yan,Zhang, Chao,Chen, Zhidong,Chen, Jun,Xie, Ping,Hao, Le,Hao, Le.

[11]Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. Junji Su,Chaoyou Pang,Hengling Wei,Libei Li,Bing Liang,Caixiang Wang,Meizhen Song,Hantao Wang,Shuqi Zhao,Xiaoyun Jia,Guangzhi Mao,Long Huang,Dandan Geng,Chengshe Wang,Shuli Fan. 2016

[12]High-Density Genetic Mapping Identifies New Major Loci for Tolerance to Low-Phosphorus Stress in Soybean. Zhang, Dan,Li, Hongyan,Chu, Shanshan,Lv, Haiyan,Wang, Jinshe,Zhang, Hengyou,Hu, Zhenbin,Yu, Deyue. 2016

[13]High-density genetic map construction and gene mapping of pericarp color in wax gourd using specific-locus amplified fragment (SLAF) sequencing. Jiang, Biao,Liu, Wenrui,Xie, Dasen,Peng, Qingwu,He, Xiaoming,Lin, Yu'e,Liang, Zhaojun,Jiang, Biao,Liu, Wenrui,Xie, Dasen,He, Xiaoming. 2015

[14]Cloning and Characterization of TaTGW-7A Gene Associated with Grain Weight in Wheat via SLAF-seq-BSA. Hu, Ming-Jian,Zhang, Hai-Ping,Liu, Kai,Cao, Jia-Jia,Wang, Sheng-Xing,Jiang, Hao,Wu, Zeng-Yun,Lu, Jie,Zhu, Xiao F.,Xia, Xian-Chun,Sun, Gen-Lou,Ma, Chuan-Xi,Chang, Cheng,Xia, Xian-Chun,Sun, Gen-Lou. 2016

[15]Construction of a High-Density Genetic Map Based on Large-Scale Marker Development in Mango Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq). Luo, Chun,Shu, Bo,Yao, Quangsheng,Wu, Hongxia,Xu, Wentian,Wang, Songbiao. 2016

[16]Physical mapping and candidate gene prediction of fertility restorer gene of cytoplasmic male sterility in cotton. Zhao, Cunpeng,Zhao, Guiyuan,Geng, Zhao,Wang, Zhaoxiao,Wang, Kaihui,Liu, Suen,Zhang, Hanshuang,Guo, Baosheng,Geng, Junyi. 2018

[17]High-Density Genetic Map Construction and Gene Mapping of Basal Branching Habit and Flowers per Leaf Axil in Sesame. Mei, Hongxian,Liu, Yanyang,Du, Zhenwei,Wu, Ke,Cui, Chengqi,Jiang, Xiaolin,Zhang, Haiyang,Zheng, Yongzhan. 2017

[18]Construction of a high-density SNP genetic map in fluecured tobacco based on SLAF-seq. Gong, Daping,Xu, Xiuhong,Wang, Chuanyi,Ren, Min,Wang, Chunkai,Chen, Mingli,Huang, Long,Xu, Xiuhong,Wang, Chunkai,Wang, Chunkai.

[19]QTL Mapping by SLAF-seq and Expression Analysis of Candidate Genes for Aphid Resistance in Cucumber. Liang, Danna,Chen, Minyang,Qi, Xiaohua,Xu, Qiang,Zhou, Fucai,Chen, Xuehao,Liang, Danna. 2016

[20]Toward Identification of Black Lemma and Pericarp Gene Blp1 in Barley Combining Bulked Segregant Analysis and Specific-Locus Amplified Fragment Sequencing. Jia, Qiaojun,Liang, Zongsuo,Jia, Qiaojun,Liang, Zongsuo,Wang, Junmei,Zhu, Jinghuan,Hua, Wei,Shang, Yi,Yang, Jianming. 2017

作者其他论文 更多>>