Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics

文献类型: 外文期刊

第一作者: Varshney, Rajeev K.

作者: Varshney, Rajeev K.;Mohan, S. Murali;Gaur, Pooran M.;Pandey, Manish K.;Sawargaonkar, Shrikant L.;Chitikineni, Annapurna;Janila, Pasupuleti;Saxena, K. B.;Sharma, Mamta;Rathore, Abhishek;Mallikarjuna, Nalini;Gowda, C. L. L.;Varshney, Rajeev K.;Varshney, Rajeev K.;Varshney, Rajeev K.;Liang, Xuanqiang;Gangarao, N. V. P. R.;Pandey, Manish K.;Bohra, Abhishek;Pratap, Aditya;Datta, Subhojit;Chaturvedi, S. K.;Nadarajan, N.;Kimurto, Paul K.;Fikre, Asnake;Tripathi, Shailesh;Bharadwaj, Ch.;Anuradha, G.;Babbar, Anita;Choudhary, Arbind K.;Mhase, M. B.;Mannur, D. M.

作者机构:

关键词: Transcriptome;Molecular markers;Genetic maps;Genomic selection;Molecular breeding

期刊名称:BIOTECHNOLOGY ADVANCES ( 影响因子:14.227; 五年影响因子:16.301 )

ISSN: 0734-9750

年卷期: 2013 年 31 卷 8 期

页码:

收录情况: SCI

摘要: Advances in next-generation sequencing and genotyping technologies have enabled generation of large-scale genomic resources such as molecular markers, transcript reads and BAC-end sequences (BESs) in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive transcriptome assemblies and genome sequences have either been developed or underway in these crops. Based on these resources, dense genetic maps, QTL maps as well as physical maps for these legume species have also been developed. As a result, these crops have graduated from 'orphan' or 'less-studied' crops to 'genomic resources rich' crops. This article summarizes the above-mentioned advances in genomics and genomics-assisted breeding applications in the form of marker-assisted selection (MAS) for hybrid purity assessment in pigeonpea; marker-assisted backcrossing (MABC) for introgressing QTL region for drought-tolerance related traits, Fusarium wilt (FW) resistance and Ascochyta blight (AB) resistance in chickpea; late leaf spot (LLS), leaf rust and nematode resistance in groundnut. We critically present the case of use of other modern breeding approaches like marker-assisted recurrent selection (MARS) and genomic selection (GS) to utilize the full potential of genomics-assisted breeding for developing superior cultivars with enhanced tolerance to various environmental stresses. In addition, this article recommends the use of advanced-backcross (AB-backcross) breeding and development of specialized populations such as multi-parents advanced generation intercross (MAGIC) for creating new variations that will help in developing superior lines with broadened genetic base. In summary, we propose the use of integrated genomics and breeding approach in these legume crops to enhance crop productivity in marginal environments ensuring food security in developing countries. (C) 2013 Elsevier Inc. All rights reserved.

分类号:

  • 相关文献

[1]Whole-genome strategies for marker-assisted plant breeding. Xu, Yunbi,Lu, Yanli,Gao, Shibin,Prasanna, Boddupalli M.. 2012

[2]Genetic and genomic analyses for economically important traits and their applications in molecular breeding of cultured fish. Tong JinGou,Sun XiaoWen. 2015

[3]Advances in Arachis genomics for peanut improvement. Pandey, Manish K.,Nigam, Shyam N.,Upadhyaya, Hari D.,Janila, Pasupuleti,Varshney, Rajeev K.,Monyo, Emmanuel,Ozias-Akins, Peggy,Liang, Xuanquiang,Guimaraes, Patricia,Zhang, Xinyou,Guo, Baozhu,Cook, Douglas R.,Michelmore, Richard,Bertioli, David J.,Varshney, Rajeev K.,Varshney, Rajeev K.. 2012

[4]Transcriptome Analysis Suggests That Chromosome Introgression Fragments from Sea Island Cotton (Gossypium barbadense) Increase Fiber Strength in Upland Cotton (Gossypium hirsutum). Quanwei Lu,Yuzhen Shi,Huang, Jinling,Yuan, Youlu,Xianghui Xiao,Pengtao Li,Juwu Gong,Wankui Gong,Aiying Liu,Haihong Shang,Junwen Li,Qun Ge,Weiwu Song,Shaoqi Li,Zhen Zhang,Md Harun or Rashid,Renhai Peng,Youlu Yuan,Jinling Huang. 2017

[5]Characterization of the global transcriptome using Illumina sequencing and novel microsatellite marker information in seashore paspalum. Jia, Xinping,Deng, Yanming,Sun, Xiaobo,Liang, Lijian,Ye, Xiaoqing.

[6]A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. Sun, Rui,Chang, Yuansheng,Wang, Yi,Li, Hui,Wu, Ting,Zhang, Xinzhong,Han, Zhenhai,Yang, Fengqiu,Zhao, Yongbo,Chen, Dongmei. 2015

[7]Comparative study of estimation methods for genomic breeding values. Wang, Chonglong,Qian, Rong,Wang, Chonglong,Zhang, Qin,Jiang, Li,Ding, Xiangdong,Wang, Chonglong,Zhao, Yaofeng. 2016

[8]Incorporating Gene Annotation into Genomic Prediction of Complex Phenotypes. Gao, Ning,Zhang, Zhe,Yuan, Xiaolong,Zhang, Hao,Li, Jiaqi,Gao, Ning,Martini, Johannes W. R.,Simianer, Henner. 2017

[9]Genome-Wide Association Study and QTL Mapping Reveal Genomic Loci Associated with Fusarium Ear Rot Resistance in Tropical Maize Germplasm. Chen, Jiafa,Ding, Junqiang,Wu, Jianyu,Chen, Jiafa,Ding, Junqiang,Wu, Jianyu,Wu, Jianyu,Chen, Jiafa,Shrestha, Rosemary,Zheng, Hongjian,Mu, Chunhua,Mahuku, George,Zheng, Hongjian,Mu, Chunhua,Mahuku, George. 2016

[10]Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model. Gao, Ning,Li, Jiaqi,He, Jinlong,Xiao, Guang,Luo, Yuanyu,Zhang, Hao,Chen, Zanmou,Zhang, Zhe,Gao, Ning,Zhang, Zhe. 2015

[11]Accuracy of genomic prediction for milk production traits in the Chinese Holstein population using a reference population consisting of cows. Ding, X.,Zhang, Z.,Li, X.,Wang, S.,Wu, X.,Sun, D.,Yu, Y.,Liu, J.,Wang, Y.,Zhang, Y.,Zhang, S.,Zhang, Y.,Zhang, Q.,Zhang, Z.. 2013

[12]Genetic parameters and trends for production and reproduction traits of a Landrace herd in China. Zhang Zhe,Zhang Hao,Pan Rong-yang,Wu Long,Li Ya-lan,Chen Zan-mou,Cai Geng-yuan,Li Jia-qi,Wu Zhen-fang. 2016

[13]Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.). Li, Wenbin,Ma, Yansong,Liu, Zhangxiong,Guo, Yong,Qiu, Lijuan,Ma, Yansong,Luan, Xiaoyan,Reif, Jochen C.,Jiang, Yong,Wen, Zixiang,Wang, Dechun,Han, Tianfu,Wu, Cunxiang,Sun, Shi,Wei, Shuhong,Wang, Shuming,Yang, Chunming,Wang, Huicai,Yang, Chunming,Zhang, Mengchen,Lu, Weiguo,Xu, Ran,Zhou, Rong,Zhou, Xinan,Wang, Ruizhen,Sun, Zudong,Chen, Huaizhu,Zhang, Wanhai,Sun, Bincheng,Wu, Jian,Han, Dezhi,Yan, Hongrui,Hu, Guohua,Liu, Chunyan,Fu, Yashu,Chen, Weiyuan,Guo, Tai,Zhang, Lei,Yuan, Baojun.

[14]The strategy and potential utilization of temperate germplasm for tropical germplasm improvement: a case study of maize (Zea mays L.). Wen, Weiwei,Tovar, Victor H. Chavez,Taba, Suketoshi,Wen, Weiwei,Yan, Jianbing,Guo, Tingting,Li, Huihui. 2012

[15]Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations. Zhang, Ao,Liu, Yubo,Cui, Zhenhai,Ruan, Yanye,Yu, Haiqiu,Zhang, Ao,Wang, Hongwu,Liu, Yubo,Burgueno, Juan,San Vicente, Felix,Crossa, Jose,Zhang, Xuecai,Wang, Hongwu,Beyene, Yoseph,Semagn, Kassa,Olsen, Michael,Prasanna, Boddupalli M.,Cao, Shiliang,Semagn, Kassa. 2017

[16]Comparison of single-trait and multiple-trait genomic prediction models. Guo, Gang,Zhao, Fuping,Du, Lixin,Guo, Gang,Guo, Gang,Wang, Yachun,Zhang, Yuan,Guo, Gang,Su, Guosheng. 2014

[17]Genome-Wide SNP Discovery and Analysis of Genetic Diversity in Farmed Sika Deer (Cervus nippon) in Northeast China Using Double-Digest Restriction Site-Associated DNA Sequencing. Ba, Hengxing,Jia, Boyin,Wang, Guiwu,Yang, Yifeng,Li, Chunyi,Kedem, Gilead. 2017

[18]Accuracy of genomic prediction using low-density marker panels. Zhang, Z.,Ding, X.,Liu, J.,Zhang, Q.,Zhang, Z.,de Koning, D. -J.,Zhang, Z.,de Koning, D. -J.,de Koning, D. -J..

[19]A novel genomic selection method combining GBLUP and LASSO. Li, Hengde,Wang, Jingwei,Li, Hengde,Bao, Zhenmin,Wang, Jingwei.

[20]Bayesian methods for estimating GEBVs of threshold traits. Wang, C-L,Ding, X-D,Wang, J-Y,Liu, J-F,Fu, W-X,Zhang, Z.,Yin, Z-J,Zhang, Q.,Wang, C-L.

作者其他论文 更多>>