Compressing recognition network of cotton disease with spot-adaptive knowledge distillation

文献类型: 外文期刊

第一作者: Zhang, Xinwen

作者: Zhang, Xinwen;Feng, Quan;Zhu, Dongqin;Liang, Xue;Zhang, Jianhua;Zhang, Jianhua

作者机构:

关键词: cotton diseases; deep learning; model compression; knowledge distillation; spot-adaptive

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:4.8; 五年影响因子:5.7 )

ISSN: 1664-462X

年卷期: 2024 年 15 卷

页码:

收录情况: SCI

摘要: Deep networks play a crucial role in the recognition of agricultural diseases. However, these networks often come with numerous parameters and large sizes, posing a challenge for direct deployment on resource-limited edge computing devices for plant protection robots. To tackle this challenge for recognizing cotton diseases on the edge device, we adopt knowledge distillation to compress the big networks, aiming to reduce the number of parameters and the computational complexity of the networks. In order to get excellent performance, we conduct combined comparison experiments from three aspects: teacher network, student network and distillation algorithm. The teacher networks contain three classical convolutional neural networks, while the student networks include six lightweight networks in two categories of homogeneous and heterogeneous structures. In addition, we investigate nine distillation algorithms using spot-adaptive strategy. The results demonstrate that the combination of DenseNet40 as the teacher and ShuffleNetV2 as the student show best performance when using NST algorithm, yielding a recognition accuracy of 90.59% and reducing FLOPs from 0.29 G to 0.045 G. The proposed method can facilitate the lightweighting of the model for recognizing cotton diseases while maintaining high recognition accuracy and offer a practical solution for deploying deep models on edge computing devices.

分类号:

  • 相关文献
作者其他论文 更多>>