Early Solid Diet Supplementation Influences the Proteomics of Rumen Epithelium in Goat Kids

文献类型: 外文期刊

第一作者: Zhuang, Yimin

作者: Zhuang, Yimin;Lv, Xiaokang;Cui, Kai;Zhang, Naifeng;Chai, Jianmin;Chai, Jianmin

作者机构:

关键词: goat; rumen epithelium; proteome; solid feed; protein expression

期刊名称:BIOLOGY-BASEL ( 影响因子:4.2; 五年影响因子:4.4 )

ISSN:

年卷期: 2023 年 12 卷 5 期

页码:

收录情况: SCI

摘要: It is well known that solid diet supplementation in early life can significantly promote rumen development and metabolic function in young ruminants. However, the changes in the expressed proteome and related metabolism in rumen epithelium in response to a supplemented solid diet remain unclear. In this study, rumen epithelial tissue from goats in three diet regimes including milk replacer only (MRO), milk replacer supplemented concentrate (MRC), and milk replacer supplemented concentrate plus alfalfa pellets (MCA) were collected for measurement of the expression of epithelial proteins using proteomic technology (six per group). The results showed that solid diet significantly improved the growth performance of goats, enhanced the ability of rumen fermentation, and promoted the development of epithelial papilla (p < 0.05). Proteome analysis revealed the distinct difference in the expressed protein in the MRC and MCA group compared with the MRO group (42 upregulated proteins and 79 downregulated proteins in MRC; 38 upregulated proteins and 73 downregulated proteins in MCA). Functional analysis showed that solid diet supplementation activated a variety of molecular functions in the epithelium, including protein binding, ATP binding, structural constituent of muscle, etc., in the MRC and MCA groups. Meanwhile, the expression of proteins related to fatty acid metabolism, the PPAR signaling pathway, valine, leucine, and isoleucine degradation, and butanoate metabolism were upregulated, being stimulated by solid feed. In contrast, the proteins associated with carbohydrate digestion and absorption and glycosaminoglycan degradation were downregulated. In addition, the protein expression of enzymes involved in ketone body synthesis in the rumen was generally activated, which was caused by solid feed. In summary, solid feed promoted the development of rumen epithelium by changing the expression of proteins related to fatty acid metabolism, energy synthesis, and signal transduction. The ketone body synthesis pathway might be the most important activated pathway, and provides energy for rumen development.

分类号:

  • 相关文献
作者其他论文 更多>>