Genome-wide identification and expression analysis of the BTB domain-containing protein gene family in tomato

文献类型: 外文期刊

第一作者: Li, Jinhua

作者: Li, Jinhua;Su, Xiaoxing;Yang, Wei;Pan, Yu;Su, Chenggang;Zhang, Xingguo;Li, Jinhua;Su, Xiaoxing;Yang, Wei;Pan, Yu;Su, Chenggang;Zhang, Xingguo;Wang, Yinlei

作者机构:

关键词: Tomato;BTB protein;Gene family;Abiotic stress;Expression profiles

期刊名称:GENES & GENOMICS ( 影响因子:1.839; 五年影响因子:1.329 )

ISSN: 1976-9571

年卷期: 2018 年 40 卷 1 期

页码:

收录情况: SCI

摘要: BTB (broad-complex, tramtrack, and bric-a-brac) family proteins are characterized by the presence of a protein-protein interaction BTB domain. BTB proteins have diverse functions, including transcriptional regulation, protein degradation, chromatin remodeling, and cytoskeletal regulation. However, little is known about this gene family in tomato (Solanum lycopersicum), the most important model plant for crop species. In this study, 38 BTB genes were identified based on tomato whole-genome sequence. Phylogenetic analysis of BTB proteins in tomato revealed that SlBTB proteins could be divided into at least 4 subfamilies. The SlBTB proteins contains 1-3 BTB domains, and several other types of functional domains, including KCTD (Potassium channel tetramerization domain-containing), the MATH (meprin and TRAF homology), ANK (Ankyrin repeats), NPR1 (nonexpressor of pathogenesis-related proteins1), NPH3 (Nonphototropic Hypocotyl 3), TAZ zinc finger, C-terminal Kelch, Skp1 and Arm (Armadillo/beta-catenin-like repeat) domains are also found in some tomato BTB proteins. Moreover, their expression patterns in tissues/stages, in response to different abiotic stress treatments and hormones were also investigated. This study provides the first comprehensive analysis of BTB gene family in the tomato genome. The data will undoubtedly be useful for better understanding the potential functions of BTB genes, and their possible roles in mediating hormone cross-talk and abiotic stress in tomato as well as in some other relative species.

分类号:

  • 相关文献

[1]Genome-wide analysis of NAM-ATAF1,2-CUC2 transcription factor family in Solanum lycopersicum. Su, Hongyan,Han, Liya,Zhang, Shizhong,Yin, Yanlei,Zhu, Dongzi.

[2]Genome-wide characterization and comparative analysis of the MLO gene family in cotton. Xiaoyan Wang,Qifeng Ma,Lingling Dou,Zhen Liu,Renhai Peng,Shuxun Yu. 2016

[3]Genome-scale identification of MLO domain-containing genes in soybean (Glycine max L. Merr.). Shen, Qi,Zhao, Jinming,Xiang, Yang,Shen, Qi,Du, Caifu,Xiang, Yang,Qin, Xinrong,Cao, Jinxuan. 2012

[4]Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction. Sun, Wei,Sun, Hong Wei,Yang, Shu Ke,Lu, Xing Bo,Xu, Xiao Hui,Chen, Hao,Wang, Juan,Sang, Ya Lin,Chen, Hao,Sang, Ya Lin.

[5]The banana E2 gene family: Genomic identification, characterization, expression profiling analysis. Dong, Chen,Hu, Huigang,Jue, Dengwei,Zhao, Qiufang,Chen, Hongliang,Xie, Jianghui,Jia, Liqiang,Dong, Chen,Hu, Huigang,Jue, Dengwei,Zhao, Qiufang,Chen, Hongliang,Xie, Jianghui,Jia, Liqiang.

[6]The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Lingling Wang,Chen, Guoping,Zongli Hu,Mingku Zhu,Zhiguo Zhu,Jingtao Hu,Ghulam Qanmber,Guoping Chen.

[7]The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns. Feng, Kun,Zheng, Qingsong,Feng, Kun,Yu, Jiahong,Cheng, Yuan,Ruan, Meiying,Wang, Rongqing,Ye, Qingjing,Zhou, Guozhi,Li, Zhimiao,Yao, Zhuping,Yang, Yuejian,Wan, Hongjian,Yu, Jiahong. 2016

[8]Identification and analysis of the metacaspase gene family in tomato. Liu, Hui,Liu, Jian,Wei, Yongxuan.

[9]Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Liu, Hui,Yu, Chuying,Li, Hanxia,Ouyang, Bo,Wang, Taotao,Zhang, Junhong,Wang, Xin,Ye, Zhibiao,Liu, Hui.

[10]Gene expression analyses of ZmPti1, encoding a maize Pti-like kinase, suggest a role in stress signaling. Zou, HW,Wu, ZY,Yang, Q,Zhang, XH,Cao, MQ,Jia, WS,Huang, CL,Xiao, X.

[11]Overexpression of ShCHL P in tomato improves seedling growth and increases tolerance to salt, osmotic, and oxidative stresses. Liu, Hui,Zhao, Man-Man,Chen, Jiang-Shu,Liu, Jian.

[12]Expression profiles of miRNAs in Gossypium raimondii. Jun MA,Teng-long GUO,Qing-lian WANG,Kun-bo WANG,Run-run SUN,Bao-hong ZHANG. 2015

[13]Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress. Wang, Hongyan,Tang, Xiaoli,Shao, Hong-Bo,Wang, Hongyan,Wang, Honglei,Wang, Hongyan,Tang, Xiaoli,Shao, Hong-Bo. 2015

[14]The Mouthparts Enriched Odorant Binding Protein 11 of the Alfalfa Plant Bug Adelphocoris lineolatus Displays a Preferential Binding Behavior to Host Plant Secondary Metabolites. Xiao, Qiang,Sun, Liang,Wei, Yu,Ma, Xiao-Yu,Xiao, Yong,Yang, Xian-Ming,Guo, Yu-Yuan,Zhang, Yong-Jun,Zhang, Dan-Dan,Zhang, Ya-Nan. 2016

[15]Identification of the genes in tea leafhopper, Empoasca onukii (Hemiptera: Cicadellidae), that encode odorant-binding proteins and chemosensory proteins using transcriptome analyses of insect heads. Bian, Lei,Li, Zhao-Qun,Cai, Xiao-Ming,Luo, Zong-Xiu,Chen, Zong-Mao,Ma, Long. 2018

[16]Genetic Regulation of GA Metabolism during Vernalization, Floral Bud Initiation and Development in Pak Choi (Brassica rapa ssp chinensis Makino). Shang, Mengya,Wang, Xueting,Zhang, Jing,Ping, Amin,Hou, Leiping,Xing, Guoming,Li, Meilan,Qi, Xianhui,Li, Gaizhen. 2017

[17]Expression profiles of the p38 MAPK signaling pathway from Chinese shrimp I Fenneropenaeus chinensis in response to viral and bacterial infections. He, Yuying,Liu, Ping,Li, Jian,Wang, Qingyin,He, Yuying,Li, Jian,Yao, Wanlong. 2018

[18]Characterization and functional analysis of a chitin synthase gene (HcCS1) identified from the freshwater pearlmussel Hyriopsis cumingii. Zheng, H. F.,Bai, Z. Y.,Lin, J. Y.,Wang, G. L.,Li, J. L.,Zheng, H. F.,Li, J. L.. 2015

[19]Dynamic Expression of MicroRNA-127 During Porcine Prenatal and Postnatal Skeletal Muscle Development. Yang Ya-lan,Li Yan,Liang Ru-yi,Zhou Rong,Ao Hong,Mu Yu-lian,Yang Shu-lin,Li Kui,Tang Zhong-lin,Li Yan. 2014

[20]Characterization of MUSTN1 gene and its relationship with skeletal muscle development at postnatal stages in Pekin ducks. Xu, T. S.,Gu, L. H.,Liu, X. L.,Xu, T. S.,Xu, T. S.,Hou, S. S.,Zhang, X. H.,Sun, Y.,Ye, B. G.. 2015

作者其他论文 更多>>