Genetic determinants of pig birth weight variability

文献类型: 外文期刊

第一作者: Wang, Xuemin

作者: Wang, Xuemin;Liu, Xiaolei;Deng, Dadong;Yu, Mei;Li, Xiaoping;Wang, Xuemin;Liu, Xiaolei

作者机构:

关键词: Birth weight variability;GWAS;Glucose and lipid homeostasis;Maternal-fetal lipid transport

期刊名称:BMC GENETICS ( 影响因子:2.797; 五年影响因子:3.263 )

ISSN: 1471-2156

年卷期: 2016 年 17 卷

页码:

收录情况: SCI

摘要: Background: Piglet birth weight variability, a trait also known as the within-litter homogeneity of birth weight, reflects the sow's prolificacy, because it is positively genetically correlated with preweaning mortality but negatively correlated with the mean growth of piglets during sucking. In addition, the maternal additive genetic variance and heritability has been found exist for this trait, thus, reduction in the variability of piglet birth weight to improve the sow prolificacy is possible by selective breeding. Results: We performed a genome wide association study (GWAS) in 82 sows with extreme standard deviation of birth weights within the first parity to identify significant SNPs, and finally 266 genome-wide significant SNPs (p < 0.01) were identified. These SNPs were mainly enriched on chromosome 7, 1, 13, 14, 15 and 18. We further scanned genes of the top 50 SNPs with the lowest p values and found some genes involved in plasma glucose homeostasis (GLP1R) and lipid metabolism as well as maternal-fetal lipid transport (AACS, APOB, OSBPL10 and LRP1B) which may contribute to the birth weight variability trait. Conclusions: Birth weight variability trait has a low heritability. It is not easy to get significant signal by GWAS using small sample size. Herein, we identified some candidate chromosome regions especially chromosome 7 and suggested five genes which may provide some information for the further study.

分类号:

  • 相关文献

[1]Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. Junji Su,Chaoyou Pang,Hengling Wei,Libei Li,Bing Liang,Caixiang Wang,Meizhen Song,Hantao Wang,Shuqi Zhao,Xiaoyun Jia,Guangzhi Mao,Long Huang,Dandan Geng,Chengshe Wang,Shuli Fan. 2016

[2]Genome-wide association mapping of glyphosate-resistance in Gossypium hirsutum races. Wang, Yuan-Yuan,Zhou, Zhong-Li,Wang, Xing-Xing,Cai, Xiao-Yan,Li, Xiao-Na,Wang, Chun-Ying,Wang, Yu-Hong,Fang, Liu,Wang, Kun-Bo,Wang, Yuan-Yuan.

[3]A Phi-Class Glutathione S-Transferase Gene for Verticillium Wilt Resistance in Gossypium arboreum Identified in a Genome-Wide Association Study. Qian Gong;Zhaoen Yang,Li, Fuguang,Eryong Chen,Gaofei Sun,Shoupu He,Hamama Islam Butt,Chaojun Zhang,Xueyan Zhang,Zuoren Yang,Xiongming Du,Fuguang Li. 2018

[4]Natural variation reveals that OsSAP16 controls low-temperature germination in rice. Wang, Xiang,Zou, Baohong,Shao, Qiaolin,Cui, Yongmei,Lu, Shan,Zhang, Yan,Huang, Ji,Hua, Jian,Huang, Quansheng,Hua, Jian. 2018

[5]Association of yield-related traits in founder genotypes and derivatives of common wheat (Triticum aestivum L.). Guo, Jie,Shi, Weiping,Zhang, Zheng,Sun, Daizhen,Yu, Jin,Li, Xinlei,Guo, Pingyi,Hao, Chenyang,Cheng, Jingye. 2018

[6]A Combined Association Mapping and Linkage Analysis of Kernel Number Per Spike in Common Wheat (Triticum aestivum L.). Shi, Weiping,Zhang, Zheng,Sun, Daizhen,Guo, Pingyi,Guo, Jie,Hao, Chenyang,Zhang, Xueyong,Zhang, Yong,Liu, Jian,Yi, Xin,Cheng, Xiaoming,Cheng, Shunhe,Cheng, Jingye,Xu, Yanhao,Xu, Yanhao. 2017

[7]Reproduction and In-Depth Evaluation of Genome-Wide Association Studies and Genome-Wide Meta-analyses Using Summary Statistics. Niu, Yao-Fang,Guo, Long-Biao,Ye, Chengyin,Zheng, Hou-Feng,He, Ji,Han, Fang,Zheng, Hou-Feng,Chen, Guo-Bo. 2017

[8]Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. Li, Chunhui,Li, Yongxiang,Wu, Xun,Zhang, Dengfeng,Shi, Yunsu,Song, Yanchun,Wang, Tianyu,Li, Yu,Sun, Baocheng,Liu, Cheng,Buckler, Edward S.,Buckler, Edward S.,Zhang, Zhiwu. 2016

[9]Identification of loci and genes for growth related traits from a genome-wide association study in a slow- x fast-growing broiler chicken cross. Liu, Ranran,Sun, Yanfa,Zhao, Guiping,Wang, Hongyang,Zheng, Maiqing,Li, Peng,Liu, Li,Wen, Jie,Sun, Yanfa,Liu, Ranran,Zhao, Guiping,Wang, Hongyang,Zheng, Maiqing,Wen, Jie.

[10]Genome-wide association study for soybean cyst nematode resistance in Chinese elite soybean cultivars. Zhang, Jun,Li, Wei,Zhang, Yanwei,Zhang, Lifeng,Dai, Haiying,Xu, Ran,Wen, Zixiang,Wang, Dechun,Zhang, Jun.

[11]Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Wu, Xun,Li, Yongxiang,Shi, Yunsu,Song, Yanchun,Zhang, Dengfeng,Li, Chunhui,Li, Yu,Wang, Tianyu,Buckler, Edward S.,Buckler, Edward S.,Zhang, Zhiwu,Wu, Xun,Zhang, Zhiwu.

[12]QTL mapping for agronomic traits using multi-parent advanced generation inter-cross (MAGIC) populations derived from diverse elite indica rice lines. Meng, Lijun,Zhao, Xiangqian,Ponce, Kimberly,Ye, Guoyou,Leung, Hei,Meng, Lijun.

[13]Identification of stable QTLs for seed oil content by combined linkage and association mapping in Brassica napus. Sun, Fengming,Liu, Jing,Hua, Wei,Sun, Xingchao,Wang, Xinfa,Wang, Hanzhong.

[14]Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). Jindong Liu,Xia, Xianchun,Zhonghu He,Awais Rasheed,Weie Wen,Jun Yan,Pingzhi Zhang,Yingxiu Wan,Yong Zhang,Chaojie Xie,Xianchun Xia. 2017

[15]Canine hip dysplasia is predictable by genotyping. Zhang, Z.,Guo, G.,Wang, Y.,Zhang, Y.,Guo, G.,Zhou, Z.,Li, J.,Zhou, Z.,Hunter, L.,Friedenberg, S.,Krotscheck, U.,Todhunter, R.,Zhu, L.,Lust, G.,Harris, S.,Jones, P.,Sandler, J.,Zhao, K.,Zhou, Z.. 2011

[16]Genome-wide association study of cold tolerance of Chinese indica rice varieties at the bud burst stage. Zhang, Mengchen,Ye, Jing,Xu, Qun,Feng, Yue,Yuan, Xiaoping,Yu, Hanyong,Wang, Yiping,Wei, Xinghua,Yang, Yaolong. 2018

[17]Divergent Hd1, Ghd7, and DTH7 Alleles Control Heading Date and Yield Potential of Japonica Rice in Northeast China. Ye, Jing,Niu, Xiaojun,Yang, Yaolong,Wang, Shan,Xu, Qun,Yuan, Xiaoping,Yu, Hanyong,Wang, Yiping,Feng, Yue,Wei, Xinghua,Ye, Jing,Wang, Shu. 2018

[18]Genome-Wide Linkage Analysis and Association Study Identifies Loci for Polydactyly in Chickens. Sun, Yanfa,Liu, Ranran,Zhao, Guiping,Zheng, Maiqing,Sun, Yan,Yu, Xiaoqiong,Li, Peng,Wen, Jie,Sun, Yanfa,Liu, Ranran,Zhao, Guiping,Zheng, Maiqing,Wen, Jie,Sun, Yanfa. 2014

[19]The Power of Inbreeding: NGS-Based GWAS of Rice Reveals Convergent Evolution during Rice Domestication. Wang, Hongru,Xiao, Yunhua,Chu, Chengcai,Wang, Hongru,Xiao, Yunhua,Chu, Chengcai,Wang, Hongru,Xiao, Yunhua,Wang, Jun,Xu, Xun,Vieira, Filipe Garrett,Li, Zhikang,Nielsen, Rasmus. 2016

[20]Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L.)Using SLAF-seq. Xie, Dongwei,Dai, Zhigang,Yang, Zemao,Tang, Qing,Su, Jianguang,Xie, Dongwei,Zhao, Debao,Yang, Xue,Zhang, Liguo,Sun, Jian. 2018

作者其他论文 更多>>