Plant topping effects on growth, yield, and earliness of field-grown cotton as mediated by plant density and ecological conditions
文献类型: 外文期刊
第一作者: Dai, Jianlong
作者: Dai, Jianlong;Zhang, Yanjun;Zhang, Dongmei;Xu, Shizhen;Cui, Zhengpeng;Li, Zhenhuai;Li, Weijiang;Zhan, Lijie;Dong, Hezhong;Li, Cundong;Dong, Hezhong;Dong, Hezhong;Tian, Liwen
作者机构:
关键词: Plant density; Plant topping; Yield; Ecological condition; Cotton
期刊名称:FIELD CROPS RESEARCH ( 影响因子:5.224; 五年影响因子:6.19 )
ISSN: 0378-4290
年卷期: 2022 年 275 卷
页码:
收录情况: SCI
摘要: Manual removal of the main-stem growth tip is traditionally used to break the apical dominance of cotton (Gossypium hirsutum L.). Chemical topping with plant growth regulators also effectively inhibits apical dominance. However, the effect of chemical topping on yield increases and whether plant density or ecological conditions affect its efficacy are unclear. Therefore, a three-year field experiment with a split-plot design was conducted to determine the effects of plant topping, plant density, and their interactions on cotton yield and related physiological and agronomical parameters at three sites with different ecological conditions in China. In each site, the main plots were assigned low, moderate, or high plant density and the subplots were assigned no topping, manual topping, or chemical topping. Growth, yield, yield components, earliness, and late-season leaf photosynthesis as well as labor and material inputs were examined each year. Compared with no topping, both chemical and manual topping greatly reduced plant height at all sites. Manual topping increased seed cotton yield and earliness in all tested plant densities and sites. However, plant density but not ecological condition greatly mediated the effect of chemical topping on yield. At low plant density, the yields with chemical topping were 4-6% lower than those with no topping and 5.5-10.8% lower than those with manual topping at the three sites. Although yields with chemical topping were comparable with those of manual topping at moderate and high plant densities, they were 8.6-12.8% higher at moderate density and 13.8-16.4% higher at high plant density than those with no topping across years and sites. Averaged across the sites, chemical topping reduced biological yield by 12.7% at low plant density. Although biological yield decreased slightly, chemical and manual topping increased the harvest index by 12.4% and 13.3% at moderate density and by 15.6% and 17.4% at high density, respectively. In comparison with no topping, the reduction in seed cotton yield with chemical topping at low plant density was attributed to insufficient biological yield, whereas the increase in yield at moderate and high plant densities was mainly due to greater partitioning of assimilates to reproductive tissues. Compared with manual topping, chemical topping produced 23.2% lower net returns as a result of lower seed cotton yield at low plant density but produced 8.1% and 20.9% higher net returns at moderate and high plant densities, respectively, because of savings in labor inputs and comparable seed cotton yields. In addition, chemical topping increased the earliness percentage compared with that of no topping. Overall, this study demonstrates that chemical topping is a promising alternative to traditional manual topping under moderate or high cotton plant density.
分类号:
- 相关文献
作者其他论文 更多>>
-
Enhancing stand establishment and yield formation of cotton with multiple drip irrigation during emergence in saline fields of Southern Xinjiang
作者:Dai, Jianlong;Cui, Zhengpeng;Zhang, Yanjun;Zhan, Lijie;Nie, JunJun;Zhang, Dongmei;Xu, Shizhen;Sun, Lin;Dong, Hezhong;Cui, Jianqiang;Chen, Bing;Dong, Hezhong;Dong, Hezhong
关键词:Cotton; Dry sowing and wet emergence; Drip irrigation; Saline soil; Stand establishment; Yield formation
-
Deficit irrigation combined with a high planting density optimizes root and soil water-nitrogen distribution to enhance cotton productivity in arid regions
作者:Wu, Fengquan;Tang, Qiuxiang;Wu, Fengquan;Cui, Jianping;Tian, Liwen;Guo, Rensong;Wang, Liang;Zheng, Zipiao;Zhang, Na;Lin, Tao;Zhang, Yanjun
关键词:Root system; Soil water; Soil nitrate nitrogen; Water productivity
-
Insight into the effects of different ripeness levels on the quality and flavor chemistry of Noni fruit ( Morinda citrifolia L.) . )
作者:Chen, Xiaoai;Gu, Chunhe;Zhu, Kexue;Xu, Fei;Feng, Zhen;Zhang, Yanjun;Chen, Xiaoai;Gu, Chunhe;Zhu, Kexue;Xu, Fei;Feng, Zhen;Zhang, Yanjun;Chen, Xiaoai;Gu, Chunhe;Zhu, Kexue;Xu, Fei;Feng, Zhen;Zhang, Yanjun;Chen, Xiaoai;Gu, Chunhe;Zhu, Kexue;Xu, Fei;Feng, Zhen;Zhang, Yanjun
关键词:Noni fruit; Quality and flavor; Physicochemical analysis; Electronic nose; Electronic tongue; GC-MS
-
Genetic diversity and population structure in five Inner Mongolia cashmere goat populations using whole-genome genotyping
作者:Zhang, Tao;Wang, Zhiying;Li, Yaming;Zhou, Bohan;Liu, Yifan;Wang, Ruijun;Lv, Qi;Zhang, Yanjun;Su, Rui;Zhang, Tao;Wang, Zhiying;Li, Yaming;Zhou, Bohan;Liu, Yifan;Li, Jinquan;Wang, Ruijun;Lv, Qi;Zhang, Yanjun;Su, Rui;Wang, Zhiying;Li, Yaming;Zhou, Bohan;Liu, Yifan;Li, Jinquan;Wang, Ruijun;Lv, Qi;Zhang, Yanjun;Su, Rui;Li, Chun
关键词:Cashmere Goat; Genetic Diversity; Inner Mongolia Autonomous Region; Population Structure
-
Improving nitrogen content in the carboxylation and electron transfer component can boost the reproductive biomass of filmless cotton in arid areas
作者:Li, Nannan;Shi, Xiaojuan;Shi, Feng;Luo, Honghai;Li, Junhong;Hao, Xianzhe;Wang, Jun;Tian, Liwen
关键词:
-
Progress in Research and Prospects for Application of Precision Gene-Editing Technology Based on CRISPR-Cas9 in the Genetic Improvement of Sheep and Goats
作者:Lu, Zeyu;Mu, Qing;Liu, Junyang;Chen, Yu;Wang, Haoyuan;Zhang, Yanjun;Su, Rui;Wang, Ruijun;Wang, Zhiying;Lv, Qi;Liu, Zhihong;Zhao, Yanhong;Lu, Zeyu;Mu, Qing;Liu, Junyang;Chen, Yu;Wang, Haoyuan;Zhang, Yanjun;Su, Rui;Wang, Ruijun;Wang, Zhiying;Lv, Qi;Liu, Zhihong;Zhao, Yanhong;Lu, Zeyu;Mu, Qing;Liu, Junyang;Chen, Yu;Wang, Haoyuan;Zhang, Yanjun;Su, Rui;Wang, Ruijun;Wang, Zhiying;Lv, Qi;Liu, Zhihong;Zhao, Yanhong;Zhang, Lingtian;Liu, Jiasen;Li, Yunhua
关键词:precision gene editing; CRISPR-Cas9; livestock genetic breeding; cashmere goat; editing efficiency; fixed point integration
-
Genomic Inbreeding and Runs of Homozygosity Analysis of Cashmere Goat
作者:Zhao, Qian;Huang, Chang;Ye, Shaohui;Zhao, Qian;Huang, Chang;Chen, Qian;Su, Yingxiao;Ma, Yuehui;Zhao, Qianjun;Zhang, Yanjun;Wang, Ruijun;Su, Rui;Xu, Huijuan;Liu, Shucai
关键词:cashmere goat; runs of homozygosity; inbreeding coefficient; genetic diversity; selection signatures