Promotive effect of low concentrations of NaHSO3 on photophosphorylation and photosynthesis in phosphoenolpyruvate carboxylase transgenic rice leaves

文献类型: 外文期刊

第一作者: Ji, BH

作者: Ji, BH;Tan, HH;Zhou, R;Jiao, DM;Shen, YG

作者机构:

关键词: NaHSO3;phosphoenolpyruvate carboxylase transgenic rice;photophosphorylation;photosynthesis

期刊名称:JOURNAL OF INTEGRATIVE PLANT BIOLOGY ( 影响因子:7.061; 五年影响因子:6.002 )

ISSN: 1672-9072

年卷期: 2005 年 47 卷 2 期

页码:

收录情况: SCI

摘要: Spraying a 1-2 mmol/L solution of NaHSO3 on the leaves of wild-type rice (Oryza sativa L.) Kitaake (WT), phosphoenolpyruvate carboxylase (PEPC) transgenic (PC) rice and PEPC+phosphate dikinase (PPDK) transgenic rice (PC+PK), in which the germplasm was transformed with wild-type Kitaake as the gene receptor, resulted in an enhancement of the net photosynthetic rate by 23.0%, 28.8%, and 34.4%, respectively, for more than 3 d. It was also observed that NaHSO3 application caused an increase in the ATP content in leaves. Spraying PMS (a cofactor catalysing the photophosphorylation cycle) and NaHSO3 separately or together on leaves resulted in an increase in photosynthesis with all treatments. There was no additional effect on photosynthetic rate when the mixture was applied, suggesting that the mechanism by which NaHSO3 promotes photosynthesis is similar to the mechanism by which PMS acts and that both of compounds enhanced the supply of ATP. After spraying a solution of NaHSO3 on leaves, compared with the WT Kitaake rice, a greater enhancement of net photosynthetic rate was observed in PEPC transgenic (PC) and PEPC+PPDK transgenic (PC+PK) rice, with the greatest increase being observed in the latter group. Therefore ATP supply may become the limiting factor that concentrates CO, in rice leaves transformed with an exogenous PEPC gene and exogenous PEPC+PPDK genes.

分类号:

  • 相关文献

[1]Gene expression profile of Arabidopsis under sodium bisulfite treatment by oligo-microarray analysis. Zhu, Bo,Han, Hong-Juan,Fu, Xiao-Yan,Zhao, Wei,Gao, Jian-Jie,Xue, Yong,Peng, Ri-He,Yao, Quan-Hong,You, Shuang-Hong.

[2]Photosynthetic and biochemical activities in flag leaves of a newly developed superhigh-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. Zhang, C. -J.,Chu, H. -J.,Chen, G. -X.,Shi, D. -W.,Zuo, M.,Wang, J.,Lu, C. -G.,Wang, P.,Chen, L..

[3]Comparative analysis of ultrastructure, antioxidant enzyme activities, and photosynthetic performance in rice mutant 812HS prone to photooxidation. Ma, J.,Lv, C. F.,Zhang, B. B.,Wang, F.,Shen, W. J.,Chen, G. X.,Gao, Z. P.,Lv, C. G..

[4]Effects of drought on photosynthetic characteristics of flag leaves of a newly-developed super-high-yield rice hybrid. Chen, GX,Liu, SH,Zhang, CJ,Lu, CG. 2004

[5]Heterosis in yield, endotoxin expression and some physiological parameters in Bt transgenic cotton. Dong, H. Z.,Li, W. J.,Tang, W.,Li, Z. H.,Zhang, D. M.. 2007

[6]Effects of ectopically expressed hyperthermophilic archaeon (Pyrococcus furiosus) ribulose-1,5-bisphosphate carboxylase/oxygenase on tobacco photosynthesis. Li, X. -G.,Meng, J. -J.,Guo, F.,Wan, S. -B.,Li, X. -G.,Meng, J. -J.,Guo, F.,Wan, S. -B.,Yang, J.,Wang, R.,Tang, X. -F.,Qin, H. -J.,Liu, X.. 2013

[7]Effects of genotypes and plant density on yield, yield components and photosynthesis in Bt transgenic cotton. Dong, HZ,Li, WJ,Tang, W,Li, ZH,Zhang, DM. 2006

[8]Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat. Wang, Xiao,Xin, Caiyun,Cai, Jian,Zhou, Qin,Dai, Tingbo,Cao, Weixing,Jiang, Dong,Xin, Caiyun. 2016

[9]Photosynthetic characteristics of the subtending leaf of cotton boll at different fruiting branch nodes and their relationships with lint yield and fiber quality. Jingran Liu,Yali Meng,Fengjuan Lv,Ji Chen,Yina Ma,Youhua Wang,Binglin Chen,Lei Zhang,Zhiguo Zhou. 2015

[10]Photosynthetic characteristics of the subtending leaf and the relationships with lint yield and fiber quality in the late-planted cotton. Jingran Liu,Yali Meng,Binglin Chen,Zhiguo Zhou,Yina Ma,Fengjuan Lv,Ji Chen,Youhua Wang.

[11]Photosynthesis in different parts of a wheat plant. Wang, Fahong,Qin, Feifei,Xu, Rongyan,Xu, Qicong,Qin, Feifei,Du, Fangling,Tian, Chengming,Li, Fengmin.

[12]Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. Wu, Xuexia,Zhu, Zongwen,Zhang, Hui,Yao, Xinfeng,Chen, Jianlin,Zha, Dingshi.

[13]Photosynthetic Response of Soybean Leaf to Wide Light-Fluctuation in Maize-Soybean Intercropping System. Yao, Xingdong,Zhou, Hongli,Zhu, Qian,Li, Chunhong,Zhang, Huijun,Xie, Futi,Wu, Jun-Jiang. 2017

[14]Comparison of the photosynthetic characteristics in the pericarp and flag leaves during wheat (Triticum aestivum L.) caryopsis development. Kong, L. A.,Xie, Y.,Si, J. S.,Hu, L.,Sun, M. Z..

[15]Physiological, structural, and proteomic analysis of chloroplasts during natural senescence of Ginkgo leaves. Wei, Xiao-Dong,Shi, Da-Wei,Chen, Guo-Xiang,Wei, Xiao-Dong,Shi, Da-Wei.

[16]Molybdenum Affects Photosynthesis and Ionic Homeostasis of Chinese Cabbage under Salinity Stress. Hu, Chengxiao,Sun, Xuecheng,Zhao, Xiaohu,Tan, Qiling,Zhang, Ying,Zhang, Mu,Li, Na.

[17]The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle. Li, XG,Meng, QW,Jiang, GQ,Zou, Q.

[18]Aluminum and Chromium Toxicity in Maize: Implications for Agronomic Attributes, Net Photosynthesis, Physio-Biochemical Oscillations, and Metal Accumulation in Different Plant Parts. Anjum, Shakeel Ahmad,Wang, Longchang,Anjum, Shakeel Ahmad,Wang, Longchang,Anjum, Shakeel Ahmad,Wang, Longchang,Anjum, Shakeel Ahmad,Khan, Imran,Saleem, Muhammad Farrukh,Ashraf, Umair,Ashraf, Umair,Tanveer, Mohsin.

[19]Improved drought resistance in a wheat stay-green mutant tasg1 under field conditions. Tian, F. X.,Gong, J. F.,Wang, G. P.,Wang, G. K.,Fan, Z. Y.,Wang, W.,Wang, G. P..

[20]Genetic Variance in Cadmium Tolerance and Accumulation in Wheat Materials Differing in Ploidy and Genome at Seedling Stage. Jiang, D.,Ci, D.,Wollenweber, B..

作者其他论文 更多>>