Colletotrichum gloeosporioides-Contaminated Tea Infusion Blocks Lipids Reduction and Induces Kidney Damage in Mice

文献类型: 外文期刊

第一作者: Li, Jin

作者: Li, Jin;Sun, Kang;Ma, Qingping;Wang, Le;Yang, Dingjun;Chen, Xuan;Li, Xinghui;Chen, Jin

作者机构:

关键词: Colletotrichum gloeosporioides;food contamination;green tea;health-care function;renal damage

期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:5.64; 五年影响因子:6.32 )

ISSN: 1664-302X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: When the homogenate of fresh tea tree leaves was fermented to produce black tea beverage, the Colletotrichum gloeosporioides (main pathogen or endophyte of Camellia sinensis) may be mixed into the fermentation liquor. However, it was unclear whether C. gloeosporioides-contaminated tea beverage would damage human health. Therefore, we investigated the changes of functional components and the influences on mice. C. gloeosporioides was added to the green tea infusion. After cultivation of 48 h, tea polyphenols, caffeine, and L-theanine decreased by 31.0, 26.2, and 8.3%, respectively. The contaminated tea infusion showed brown stain, and produced a group of toxic materials named phthalic acid esters. The animal study showed that green tea without contamination significantly decreased levels of alanine aminotransferase, triglycerides, free fatty acids, low-density lipoprotein, and increased insulin level compared with obese mice. On the contrary, contaminated tea lost the effects on these indicators. Furthermore, the urea nitrogen and serum creatinine levels significantly increased in the contaminated tea-drinking mice. Altogether, our results indicate that C. gloeosporioides contamination can reduce the amount of functional components of green tea. Therefore, it inhibits some health-care function of lipid-lowering. In addition, the toxic components in contaminated tea infusion might induce renal damage.

分类号:

  • 相关文献

[1]Fumonisin detection and analysis of potential fumonisin-producing Fusarium spp. in asparagus (Asparagus officinalis L.) in Zhejiang Province of China. Wang, Jiansheng,Wang, Xiaoping,Zhou, Ying,Wang, Qiaomei,Wang, Jiansheng,Du, Liangcheng.

[2]Effects of potassium and magnesium nutrition on the quality components of different types of tea. Ruan, JY,Wu, X,Hardter, R. 1999

[3]Evaluation of transfer rates of multiple pesticides from green tea into infusion using water as pressurized liquid extraction solvent and ultra-performance liquid chromatography tandem mass spectrometry. Chen, Hongping,Liu, Xin,Lu, Chengyin,Chen, Hongping,Pan, Meiling,Liu, Xin,Lu, Chengyin,Chen, Hongping,Liu, Xin,Lu, Chengyin. 2017

[4]Chemosystematics of tea trees based on tea leaf polyphenols as phenetic markers. Li, Jia-Hua,Shimizu, Keiichi,Sakata, Yusuke,Hashimoto, Fumio,Li, Jia-Hua,Shimizu, Keiichi,Sakata, Yusuke,Hashimoto, Fumio,Nesumi, Atsushi,Liang, Ming-Zhi,He, Qing-Yuan,Zhou, Hong-Jie. 2010

[5]Determination of Fifteen Rare Earth Elements in Green Tea Leaves and Their Tea Infusions Consumed in Zhejiang Province, China. Zheng, Chuangmu,Zhang, Yongzhi,Xu, Lihong,Wang, Gangjun,Ye, Xuezhu.

[6]Cream Formation And Main Chemical Components Of Green Tea Infusions Processed From Different Parts Of New Shoots. Yin, Jun-Feng,Xu, Yong-Quan,Yuan, Hai-Bo,Luo, Long-Xin,Qian, Xiao-Jun.

[7]Metabolomic Analyses Reveal Distinct Change of Metabolites and Quality of Green Tea during the Short Duration of a Single Spring Season. Liu, Jianwei,Liu, Jianwei,Zhang, Qunfeng,Liu, Meiya,Ma, Lifeng,Shi, Yuanzhi,Ruan, Jianyun,Liu, Jianwei,Zhang, Qunfeng,Liu, Meiya,Ma, Lifeng,Shi, Yuanzhi,Ruan, Jianyun.

[8]Suppression of diabetes in non-obese diabetic (NOD) mice by oral administration of water-soluble and alkali-soluble polysaccharide conjugates prepared from green tea. Chen, Xiaoqiang,Lin, Zhi,Ye, Yang,Yin, Junfeng,Jiang, Yongwen,Zhang, Rui,Wan, Haitong.

[9]Analysis of chemical components in green tea in relation with perceived quality, a case study with Longjing teas. Wang, Kunbo,Ruan, Jianyun,Wang, Kunbo,Ruan, Jianyun,Wang, Kunbo,Wang, Kunbo.

[10]Prediction of Chinese green tea ranking by metabolite profiling using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Jing, Jin,Wang, Jie,Jing, Jin,Shi, Yuanzhi,Zhang, Qunfeng,Wang, Jie,Ruan, Jianyun,Shi, Yuanzhi,Zhang, Qunfeng,Ruan, Jianyun.

[11]Effect of Ca2+ concentration on the tastes from the main chemicals in green tea infusions. Yin, Jun-Feng,Du, Qi-Zhen,Xu, Yong-Quan,Yin, Jun-Feng,Zhang, Ying-Na,Chen, Jian-Xin,Yuan, Hai-Bo,Xu, Yong-Quan. 2014

[12]Effect of the Near Infrared Spectrum Resolution on the Nitrogen Content Model in Green Tea. Yang Dan,Liu Xin,Zhang Ying-bin,Yin Peng,Liu Hong-gang. 2013

[13]Determination of flavonol glycosides in green tea, oolong tea and black tea by UHPLC compared to HPLC. Jiang, Heyuan,Jiang, Heyuan,Engelhardt, Ulrich H.,Thraene, Claudia,Maiwald, Beate,Stark, Janina,Jiang, Heyuan.

[14]Determining the geographical origin of Chinese green tea by linear discriminant analysis of trace metals and rare earth elements: Taking Dongting Biluochun as an example. Ma, Guicen,Zhang, Yingbin,Wang, Guoqing,Chen, Liyan,Zhang, Minglu,Liu, Ting,Liu, Xin,Lu, Chengyin,Ma, Guicen,Zhang, Yingbin,Zhang, Jianyang,Wang, Guoqing,Chen, Liyan,Zhang, Minglu,Liu, Ting,Liu, Xin,Lu, Chengyin.

[15]Effects of phosphorus supply on the quality of green tea. Lin, Zheng-He,Chen, Li-Song,Lin, Zheng-He,Chen, Li-Song,Lin, Zheng-He,Chen, Rong-Bing,Zhang, Fang-Zhou,Qi, Yi-Ping,Chen, Li-Song.

[16]Comparative characterisation of green tea and black tea cream: Physicochemical and phytochemical nature. Lin, Xiaorong,Chen, Zhongzheng,Zhang, Yuanyuan,Luo, Wei,Tang, Hao,Deng, Baibiao,Deng, Jian,Li, Bin,Tang, Hao.

[17]Free radical scavenging effect of Pu-erh tea extracts and their protective effect on oxidative damage in human fibroblast cells. Jie, Guoliang,Lin, Zhi,Zhang, Longze,Lv, Haipeng,He, Puming,Zhao, Baolu.

[18]Processing technologies affect the aroma but not the taste of teas: A study of Yunnan Biluochun, Jiangsu Biluochun, and other regular green teas. Wang, Chen,Wu, Yuanshuang,Meng, Qingxiong,Lv, Shidong,Wang, Jianxin,Qiu, Xueli.

[19]Transcriptome characterization and expression profiles of the related defense genes in postharvest mango fruit against Colletotrichum gloeosporioides. Hong, Keqian,Gong, Deqiang,Zhang, Lubin,Hu, Huigang,Jia, Zhiwei,Gu, Hui,Song, Kanghua. 2016

[20]Cloning of a carbendazim-resistant gene from Colletotrichum gloeosporioides of mango in South China. Ru-Lin, Zhan,Jun-Sheng, Huang. 2007

作者其他论文 更多>>