Proteomic analysis of elite soybean Jidou17 and its parents using iTRAQ-based quantitative approaches

文献类型: 外文期刊

第一作者: Qin, Jun

作者: Qin, Jun;Gu, Feng;Zhao, Shuangjin;Yang, Chunyan;Zhang, Mengchen;Liu, Duan;Chen, Hao;Zhan, Xu;Yin, Changcheng;Zhang, Jianan

作者机构:

关键词: Soybean;iTRAQ;Proteomic

期刊名称:PROTEOME SCIENCE ( 影响因子:2.48; 五年影响因子:2.619 )

ISSN: 1477-5956

年卷期: 2013 年 11 卷

页码:

收录情况: SCI

摘要: Background: Derived from Hobbit as the female parent and Zao5241 as the male parent, the elite soybean cultivar Jidou17 is significantly higher yielding and shows enhanced qualities and stronger resistance to non-biological stress than its parents. The purpose of this study is to understand the difference in protein expression patterns between Jidou17 and its parental strains and to evaluate the parental contributions to its elite traits. Results: Leaves (14 days old) from Jidou17 and its parental cultivars were analysed for differential expressed proteins using an iTRAQ-based (isobaric tags for relative and absolute quantitation) method. A total of 1269 proteins was detected, with 141 and 181 proteins in Jidou17 differing from its female and male parent, respectively. Functional classification and an enrichment analysis based on biological functions, biological processes, and cellular components revealed that all the differential proteins fell into many functional categories but that the number of proteins varied greatly for the different categories, with enrichment in specific categories. A pathway analysis indicated that the differentiated proteins were mainly classified into the ribosome assembly pathway. Protein expression clustering results showed that the expression profiles between Jidou17 and its female parent Hobbit were more similar than those between Jidou17 and its male parent Zao5241 and between the two parental strains. Therefore, the female parent Hobbit contributed more to the Jidou17 genotype. Conclusions: This study applied a proven technique to study proteomics in 14-day-old soybean leaves and explored the depth and breadth of soybean protein research. The results provide new data for further understanding the mechanisms of elite cultivar development.

分类号:

  • 相关文献

[1]Proteomic analysis by iTRAQ-MRM of soybean resistance to Lamprosema Indicate. Sun, Zudong,Cai, Zhaoyan,Chen, Huaizhu,Lai, Zhenguang,Yang, Shouzhen,Tang, Xiangmin. 2017

[2]iTRAQ-based analysis of developmental dynamics in the soybean leaf proteome reveals pathways associated with leaf photosynthetic rate. Qin, Jun,Wang, Fengmin,Zhang, Mengchen,Xu, Jin,Zhang, Jianan,Liu, Duan,Yin, Changcheng,Chen, Hao,Chen, Pengyin,Qin, Jun,Ma, Jinbing,Zhang, Bo.

[3]Insights into the molecular mechanism of the responses for Cyperus alternifolius to PhACs stress in constructed wetlands. Yan, Qing,Zhu, Zhi-wei,Feng, Guo-zhong,Yan, Qing,Zhu, Zhi-wei,Gao, Xu,Guo, Jin-song.

[4]Strong, sudden cooling alleviates the inflammatory responses in heat-stressed dairy cows based on iTRAQ proteomic analysis. Cheng, Jianbo,Fan, Caiyun,Cheng, Jianbo,Min, Li,Zheng, Nan,Zhao, Shengguo,Zhang, Yangdong,Wang, Jiaqi,Min, Li. 2018

[5]ITRAQ quantitative analysis of plasma proteome changes of cow from pregnancy to lactation. Ma Lu,Yan Su-mei,Ma Lu,Bu Deng-pan,Yang Yong-xing,Wang Jia-qi,Bu Deng-pan. 2015

[6]Proteomic and Physiological Analysis of the Response of Oat (Avena sativa) Seeds to Heat Stress under Different Moisture Conditions. Chen, Lingling,Chen, Quanzhu,Xia, Fangshan,Yan, Huifang,Zhu, Yanqiao,Mao, Peisheng,Chen, Lingling,Chen, Quanzhu,Kong, Lingqi. 2016

[7]Proteomic changes of the porcine small intestine in response to chronic heat stress. Cui, Yanjun,Gu, Xianhong. 2015

[8]Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress. Xue, Dawei,Deng, Xiangxiong,Zhang, Xiaoqin,Xu, Xiangbin,Qian, Qian,Xue, Dawei,Hu, Jiang,Zeng, Dali,Guo, Longbiao,Qian, Qian,Jiang, Hua,Wang, Hua. 2014

[9]Proteome and Acetyl-Proteome Profiling of Camellia sinensis cv. 'Anjin Baicha' during Periodic Albinism Reveals Alterations in Photosynthetic and Secondary Metabolite Biosynthetic Pathways. Xu, Yan-Xia,Chen, Wei,Ma, Chun-Lei,Shen, Si-Yan,Chen, Liang,Zhou, Yan-Yan,Zhou, Lian-Qi. 2017

[10]Comparative Proteomic Analysis of Wheat (Triticum aestivum L.) Hybrid Necrosis. Jiang Qi-yan,Hu Zheng,Zhang Hui,Pan Xing-lai. 2013

[11]Proteins involved in nodulation competitiveness of two Bradyrhizobium diazoefficiens strains induced by soybean root exudates. Liu, Yao,Guan, Dawei,Jiang, Xin,Ma, Mingchao,Li, Jun,Li, Li,Cao, Fengming,Chen, Huijun,Shen, Delong,Li, Jun.

[12]Comparative Proteomic Analysis Reveals the Effects of Exogenous Calcium against Acid Rain Stress in Liquidambar formosana Hance Leaves. Hu, Wen-Jun,Chen, Lin,Wei, Jia,Qiu, Xiao-Yun,Shen, Guo-Xin,Wu, Fei-Hua.

[13]iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. Huang, Jinming,Luo, Guojing,Zhang, Zijing,Wang, Xiuge,Ju, Zhihua,Qi, Chao,Zhang, Yan,Wang, Changfa,Li, Rongling,Li, Jianbin,Yin, Weijun,Zhong, Jifeng,Luo, Guojing,Zhang, Zijing,Xu, Yinxue,Moisa, Sonia J.,Loor, Juan J.,Loor, Juan J.,Moisa, Sonia J.,Loor, Juan J.. 2014

[14]Proteomic Analysis of Differences in Fiber Development between Wild and Cultivated Gossypium hirsutum L.. Yuan Qin,Yu, Shuxun,Hengling Wei,Huiru Sun,Pengbo Hao,Hantao Wang,Junji Su,Shuxun Yu.

[15]Comparative Proteomic Analysis of Gossypium thurberi in Response to Verticillium dahliae Inoculation. Weiping Fang,Deyi Xie,Heqin Zhu,Wu Li,Zhenzhen Xu,Lirong Yang,Zhifang Li,Li Sun,Jinxia Wang,Lihong Nie,Zhongjie Tang,Shuping Lv,Fu’an Zhao,Yao Sun,Yuanming Zhao,Jianan Hou,Xiaojie Yang. 2015

[16]iTRAQ-Based Comparative Proteomic Analysis of Seedling Leaves of Two Upland Cotton Genotypes Differing in Salt Tolerance. Wenfang Gong,Feifei Xu,Du, Xiongming,Junling Sun,Zhen Peng,Shoupu He,Zhaoe Pan,Xiongming Du. 2017

[17]iTRAQ Protein Profile Differential Analysis between Somatic Globular and Cotyledonary Embryos Reveals Stress, Hormone, and Respiration Involved in Increasing Plant let Regeneration of Gossypium hirsutum L.. Xiaoyang Ge,Chaojun Zhang,Qianhua Wang,Zuoren Yang,Ye Wang,Xueyan Zhang,Zhixia Wu,Yuxia Hou,Jiahe Wu,Fuguang Li.

[18]Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.). Sun, Xiaochuan,Wang, Yan,Xu, Liang,Li, Chao,Zhang, Wei,Luo, Xiaobo,Jiang, Haiyan,Liu, Liwang,Sun, Xiaochuan,Sun, Xiaochuan,Wang, Yan,Xu, Liang,Luo, Xiaobo,Liu, Liwang. 2017

[19]Long photoperiod affects the maize transition from vegetative to reproductive stages: a proteomic comparison between photoperiod-sensitive inbred line and its recurrent parent. Tian, Lei,Wang, Shunxi,Song, Xiaoheng,Liu, Ping,Chen, Zan,Chen, Yanhui,Wu, Liuji,Tian, Lei,Wang, Shunxi,Song, Xiaoheng,Liu, Ping,Chen, Zan,Chen, Yanhui,Wu, Liuji,Tian, Lei,Wang, Shunxi,Song, Xiaoheng,Liu, Ping,Chen, Zan,Chen, Yanhui,Wu, Liuji,Zhang, Jun. 2018

[20]iTRAQ Mitoproteome Analysis Reveals Mechanisms of Programmed Cell Death in Arabidopsis thaliana Induced by Ochratoxin A. Xu, Wentao,Luo, Yunbo,Huang, Kunlun,Wang, Yan,Wang, Yan,Peng, Xiaoli,Yang, Zhuojun,Zhao, Weiwei,Xu, Wentao,Hao, Junran,Wu, Weihong,Shen, Xiao Li,Luo, Yunbo,Huang, Kunlun,Peng, Xiaoli,Shen, Xiao Li. 2017

作者其他论文 更多>>