Detoxification of Deoxynivalenol via Glycosylation Represents Novel Insights on Antagonistic Activities of Trichoderma when Confronted with Fusarium graminearum

文献类型: 外文期刊

第一作者: Tian, Ye

作者: Tian, Ye;Tan, Yanglan;Liu, Na;Yan, Zheng;Wu, Aibo;Liao, Yucai;Chen, Jie;de Saeger, Sarah;Yang, Hua;Zhang, Qiaoyan

作者机构:

关键词: mycotoxin;toxigenic Fusarium;biological control;Trichoderma;modified mycotoxin

期刊名称:TOXINS ( 影响因子:4.546; 五年影响因子:4.8 )

ISSN: 2072-6651

年卷期: 2016 年 8 卷 11 期

页码:

收录情况: SCI

摘要: Deoxynivalenol (DON) is a mycotoxin mainly produced by the Fusarium graminearum complex, which are important phytopathogens that can infect crops and lead to a serious disease called Fusarium head blight (FHB). As the most common B type trichothecene mycotoxin, DON has toxic effects on animals and humans, which poses a risk to food security. Thus, efforts have been devoted to control DON contamination in different ways. Management of DON production by Trichoderma strains as a biological control-based strategy has drawn great attention recently. In our study, eight selected Trichoderma strains were evaluated for their antagonistic activities on F. graminearum by dual culture on potato dextrose agar (PDA) medium. As potential antagonists, Trichoderma strains showed prominent inhibitory effects on mycelial growth and mycotoxin production of F. graminearum. In addition, the modified mycotoxin deoxynivalenol-3-glucoside (D3G), which was once regarded as a detoxification product of DON in plant defense, was detected when Trichoderma were confronted with F. graminearum. The occurrence of D3G in F. graminearum and Trichoderma interaction was reported for the first time, and these findings provide evidence that Trichoderma strains possess a self-protection mechanism as plants to detoxify DON into D3G when competing with F. graminearum.

分类号:

  • 相关文献

[1]Use of formulated Trichoderma sp Tri-1 in combination with reduced rates of chemical pesticide for control of Sclerotinia sclerotiorium on oilseed rape. Hu, Xiaojia,Xie, Lihua,Yu, Changbing,Li, Yinshui,Qin, Lu,Hu, Lei,Zhang, Yinbo,Liao, Xing,Roberts, Daniel P.. 2015

[2]A new method for the preservation of axenic fungal cultures. Hu, Xiaojia,Xie, Lihua,Yu, Changbing,Li, Yinshui,Liao, Xing,Webster, Gordon. 2014

[3]Biodegradation of neonicotinoid insecticide, imidacloprid by restriction enzyme mediated integration (REMI) generated Trichoderma mutants. He, Xiangfeng,Wubie, Abebe Jenberie,Diao, Qingyun,Li, Wei,Xue, Fei,Guo, Zhanbo,Zhou, Ting,Xu, Shufa,Wubie, Abebe Jenberie.

[4]Effect of parasitism on flight behavior of the soybean aphid, Aphis glycines. Wu, Kongming,Wyckhuys, Kris A. G.,Heimpel, George E..

[5]Effects of Carbon Concentrations and Carbon to Nitrogen ratios on Sporulation of Two Biological Control Fungi as Determined by Different Culture Methods. Liu, Xingzhong,Gao, Li.

[6]Phage-borne peptidomimetics as immunochemical reagent in dot-immunoassay for mycotoxin zearalenone. He, Qing-hua,Xu, Yang,Li, Yan-ping,Huang, Zhi-bing,Zhang, Cun-zheng. 2014

[7]Recent Advances in Mycotoxin Determination for Food Monitoring via Microchip. Man, Yan,Liang, Gang,Li, An,Pan, Ligang,Man, Yan,Liang, Gang,Li, An,Pan, Ligang,Man, Yan,Liang, Gang,Li, An,Pan, Ligang. 2017

[8]Ustiloxin G, a New Cyclopeptide Mycotoxin from Rice False Smut Balls. Wang, Xiaohan,Wang, Jian,Lai, Daowan,Wang, Weixuan,Zhou, Ligang,Dai, Jungui,Dai, Jungui,Liu, Yang. 2017

[9]Advances in research of nephrotoxicity and toxic antagonism of ochratoxin A. Zhao, Tao,Shen, Xiao Li,Chen, Wenying,Liao, Xin,Yang, Jieyeqi,Zou, Yan,Wang, Yan,Fang, Cuilan. 2017

[10]An oligosorbent-based aptamer affinity column for selective extraction of aflatoxin B-2 prior to HPLC with fluorometric detection. Liu, Hongmei,Luan, Yunxia,Lu, Anxiang,Li, Bingru,Wang, JiHua,Yang, Meihua,Yang, Meihua. 2018

[11]Determination for major chemical contaminants in tea (Camellia sinensis) matrices: A review. Li, Xin,Zhang, Zhaowei,Li, Peiwu,Zhang, Qi,Zhang, Wen,Ding, Xiaoxia,Li, Xin,Zhang, Zhaowei,Li, Peiwu,Zhang, Qi,Ding, Xiaoxia,Li, Xin,Zhang, Zhaowei,Li, Peiwu,Zhang, Qi,Li, Peiwu,Zhang, Wen,Ding, Xiaoxia,Zhang, Wen,Ding, Xiaoxia.

[12]Bioactive Bis-naphtho-gamma-pyrones from Rice False Smut Pathogen Ustilaginoidea virens. Lu, Shiqiong,Sun, Weibo,Meng, Jiajia,Wang, Ali,Wang, Xiaohan,Tian, Jin,Fu, Xiaoxiang,Lai, Daowan,Zhou, Ligang,Dai, Jungui,Dai, Jungui,Liu, Yang.

[13]Visual and microplate detection of aflatoxin B2 based on NaCl-induced aggregation of aptamer-modified gold nanoparticles. Luan, Yunxia,Chen, Jiayi,Li, Cheng,Ping, Hua,Ma, Zhihong,Lu, Anxiang,Xie, Gang.

[14]Characterization of Phenolic Compounds from Early and Late Ripening Sweet Cherries and Their Antioxidant and Antifungal Activities. Wang, Meng,Jiang, Nan,Wang, Yao,Jiang, Dongmei,Feng, Xiaoyuan,Wang, Meng,Jiang, Nan,Wang, Yao,Jiang, Dongmei,Feng, Xiaoyuan.

[15]Evaluation of latex agglutination inhibition reaction test for rapid detection of aflatoxin B-1. Chen, Fusheng,Wang, Xiaohong,Chen, Fusheng,Ye, Yang,Wang, Ping,Chen, Fusheng,Wang, Xiaohong,Zhou, Youxiang. 2011

[16]Novel multiplex fluorescent immunoassays based on quantum dot nanolabels for mycotoxins determination. Beloglazova, N. V.,Speranskaya, E. S.,Sanders, M.,Goftman, V. V.,De Saeger, S.,Wu, A.,Wang, Z.,Zhang, D.,Goftman, V. V.,Goryacheva, I. Yu..

[17]Determination of the aflatoxin AFB1 from corn by direct analysis in real time-mass spectrometry (DART-MS). Busman, Mark,Bobell, John R.,Maragos, Chris M.,Liu, Jihong,Zhong, Hongjian. 2014

[18]A direct assessment of mycotoxin biomarkers in human urine samples by liquid chromatography tandem mass spectrometry. Ediage, Emmanuel Njumbe,Di Mavungu, Jose Diana,Song, Suquan,Van Peteghem, Carlos,De Saeger, Sarah,Song, Suquan,Wu, Aibo.

[19]Biotoxin sensing in food and environment via microchip. Zhang, Zhaowei,Yu, Li,Xu, Lin,Hu, Xiaofeng,Li, Peiwu,Zhang, Qi,Zhang, Zhaowei,Li, Peiwu,Zhang, Qi,Ding, Xiaoxia,Yu, Li,Li, Peiwu,Ding, Xiaoxia,Xu, Lin,Li, Peiwu,Hu, Xiaofeng,Li, Peiwu,Feng, Xiaojun.

[20]Simultaneous determination of major type B trichothecenes and deoxynivalenol-3-glucoside in animal feed and raw materials using improved DSPE combined with LC-MS/MS. Zhao, Zhiyong,Rao, Qinxiong,Song, Suquan,Liu, Na,Han, Zheng,Wu, Aibo,Zhao, Zhiyong,Hou, Jiafa.

作者其他论文 更多>>