Improving accuracy and generalization in single kernel oil characteristics prediction in maize using NIR-HSI and a knowledge-injected spectral tabtransformer
文献类型: 外文期刊
第一作者: Song, Anran
作者: Song, Anran;Chen, Xiaoqian;Guo, Xinyu;Wen, Weiliang;Wang, Chuanyu;Gu, Shenghao;Wang, Juan;Zhao, Chunjiang;Song, Anran;Song, Anran;Chen, Xiaoqian;Guo, Xinyu;Wen, Weiliang;Wang, Chuanyu;Gu, Shenghao;Wang, Juan;Zhao, Chunjiang;Song, Anran;Chen, Xiaoqian;Guo, Xinyu;Wen, Weiliang;Wang, Chuanyu;Gu, Shenghao;Wang, Juan
作者机构:
关键词: HSI; Maize seed; Oil ratio; Oil mass; TabTransformer; DL
期刊名称:ARTIFICIAL INTELLIGENCE IN AGRICULTURE ( 影响因子:12.4; 五年影响因子:12.7 )
ISSN: 2097-2113
年卷期: 2025 年 15 卷 4 期
页码:
收录情况: SCI
摘要: Near-infrared spectroscopy hyperspectral imaging (NIR-HSI) is widely used for seed component prediction due to its non-destructive and rapid nature. However, existing models often suffer from limited generalization, particularly when trained on small datasets, and there is a lack of effective deep learning (DL) models for spectral data analysis. To address these challenges, we propose the Knowledge-Injected Spectral TabTransformer (KIT-Spectral TabTransformer), an innovative adaptation of the traditional TabTransformer specifically designed for maize seeds. By integrating domain-specific knowledge, this approach enhances model training efficiency and predictive accuracy while reducing reliance on large datasets. The generalization capability of the model was rigorously validated through ten-fold cross-validation (10-CV). Compared to traditional machine learning methods, the attention-based CNN (ACNNR), and the Oil Characteristics Predictor Transformer (OCP-Transformer), the KIT-Spectral TabTransformer demonstrated superior performance in oil mass prediction, achieving R2 p= 0.9238 f 0.0346, RMSEp = 0.1746 f 0.0401. For oil content, R2p= 0.9602 f 0.0180 and RMSEp = 0.5301 f 0.1446 on a dataset with oil content ranging from 0.81 % to 13.07 %. On the independent validation set, our model achieved R2 values of 0.7820 and 0.7586, along with RPD values of 2.1420 and 2.0355 in the two tasks, highlighting its strong prediction capability and potential for real-world application. These findings offer a potential method and direction for single seed oil prediction and related crop component analysis. (c) 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).
分类号:
- 相关文献
作者其他论文 更多>>
-
LettuceP3D: A tool for analysing 3D phenotypes of individual lettuce plants
作者:Ge, Xiaofen;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Wu, Sheng;Wen, Weiliang;Shen, Fei
关键词:Lettuce; Point cloud segmentation; Deep learning; Phenotypic analysis algorithm
-
3D time-series phenotyping of lettuce in greenhouses
作者:Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu;Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Lu, Xianju;Fan, Jiangchuan;Zhang, Minggang;Liang, Yuqiang;Gu, Shenghao;Guo, Xinyu
关键词:Time-series; 3D phenotyping; Rail-driven phenotyping platform; Lettuce; Greenhouse
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Research note: Prevalence and genetic characteristics of pathogenic E. coli isolates from domestic pigeons in central China
作者:Wang, Juan;Lu, Qin;Yao, Lun;Zhang, Wenting;Hu, Qiao;Guo, Yunqing;Wen, Guoyuan;Shao, Huabin;Luo, Qingping;Zhang, Tengfei;Wen, Guoyuan;Luo, Qingping
关键词:Pathogenic E. coli; Pigeons; Serotypes; Antibiotic resistance
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding