De novo characterization of the Anthurium transcriptome and analysis of its digital gene expression under cold stress

文献类型: 外文期刊

第一作者: Tian, Dan-Qing

作者: Tian, Dan-Qing;Pan, Xiao-Yun;Yu, Yong-Ming;Wang, Wei-Yong;Ge, Ya-Ying;Shen, Xiao-Lan;Shen, Fu-Quan;Zhang, Fei;Liu, Xiao-Jing

作者机构:

关键词: Anthurium;Cold;Transcriptome;Digital gene expression

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2013 年 14 卷

页码:

收录情况: SCI

摘要: Background: Anthurium andraeanum is one of the most popular tropical flowers. In temperate and cold zones, a much greater risk of cold stress occurs in the supply of Anthurium plants. Unlike the freeze-tolerant model plants, Anthurium plants are particularly sensitive to low temperatures. Improvement of chilling tolerance in Anthurium may significantly increase its production and extend its shelf-life. To date, no previous genomic information has been reported in Anthurium plants. Results: Using Illumina sequencing technology, we generated over two billion base of high-quality sequence in Anthurium, and demonstrated de novo assembly and annotation of genes without prior genome information. These reads were assembled into 44,382 unigenes (mean length=560 bp). Based on similarity search with known protein in the non-redundant (nr) protein database, 27396 unigenes (62%) were functionally annotated with a cut-off E-value of 10(-5). Further, DGE tags were mapped to the assembled transcriptome for gene expression analysis under cold stress. In total, 4363 differentially expressed genes were identified. Among these genes, 292, 805 and 708 genes were up-regulated after 1-h, 5-h and 24-h cold treatment, respectively. Then we mapped these cold-induced genes to the KEGG database. Specific enrichment was observed in photosynthesis pathway, metabolic pathways and oxidative phosphorylation pathway in 1-h cold-treated plants. After a 5-h cold treatment, the metabolic pathways and oxidative phosphorylation pathway were significantly identified as the top two pathways. After 24-h cold treatment, mRNA surveillance pathway, RNA transport pathway and plant-pathogen interaction pathway were significantly enriched. Together, a total of 39 cold-inducible transcription factors were identified, including subsets of AP2/ERF, Zinc figure, NAC, MYB and bZIP family members. Conclusion: Our study is the first to provide the transcriptome sequence resource for Anthurium plants, and demonstrate its digital gene expression profiling under cold conditions using the assembled transcriptome data for reference. These data provides a valuable resource for genetic and genomic studies under abiotic conditions for Anthurium plants.

分类号:

  • 相关文献

[1]De novo assembly of the desert tree Haloxylon ammodendron (C. A. Mey.) based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. Long, Yan,Zhang, Jingwen,Tian, Xinjie,Wu, Shanshan,Pei, Xin Wu,Zhang, Qiong,Zhang, Jianping,Dang, Zhanhai. 2014

[2]Comparative Transcriptome Analysis to Reveal Genes Involved in Wheat Hybrid Necrosis. Cheng, Yan,Guo, Jiahui,Zheng, Xuelian,Deng, Kejun,Zhou, Jianping,Yang, Ennian,Liu, Cheng. 2014

[3]Transcriptome and gene expression analysis during flower blooming in Rosa chinensis 'Pallida'. Yan, Huijun,Zhang, Hao,Chen, Min,Jian, Hongying,Li, Shubin,Zhang, Ting,Zhou, Ningning,Qiu, Xianqin,Wang, Qigang,Tang, Kaixue,Yan, Huijun,Zhang, Hao,Chen, Min,Jian, Hongying,Li, Shubin,Zhang, Ting,Zhou, Ningning,Qiu, Xianqin,Wang, Qigang,Tang, Kaixue,Baudino, Sylvie,Caissard, Jean-Claude,Bendahmane, Mohammed. 2014

[4]Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. Xiao, Jin,Jin, Xiahong,Jia, Xinping,Wang, Haiyan,Cao, Aizhong,Pei, Haiyan,Xue, Zhaokun,He, Liqiang,Chen, Qiguang,Wang, Xiue,Jia, Xinping,Zhao, Weiping. 2013

[5]Transcriptome profiling and digital gene expression by deep sequencing in early somatic embryogenesis of endangered medicinal Eleutherococcus senticosus Maxim.. Tao, Lei,Zhao, Yue,Wu, Ying,Wang, Qiuyu,You, Xiangling,Yuan, Hongmei,Zhao, Lijuan,Guo, Wendong.

[6]Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression. Yu, Ying,Yuan, Hongmei,Guan, Fengzhi,Yu, Ying,Huang, Wengong,Wu, Guangwen,Yuan, Hongmei,Song, Xixia,Kang, Qinghua,Zhao, Dongsheng,Jiang, Weidong,Liu, Yan,Wu, Jianzhong,Cheng, Lili,Yao, Yubo,Guan, Fengzhi,Chen, Hongyu.

[7]Genetic variations within a collection of anthuriums unraveled by morphological traits and AFLP markers. Ge, Yaying,Zhang, Fei,Shen, Xiaolan,Yu, Yongming,Pan, Xiaoyun,Liu, Xiaojing,Liu, Jianxin,Pan, Gangmin,Tian, Danqing.

[8]Development and evaluation of a loop-mediated isothermal amplification assay for rapid detection of bacterial blight pathogen (Xanthomonas axonopodis pv. dieffenbachiae) in anthurium. Niu Jun-hai,Gao Yue-rong,Yin Jun-mei,Leng Qing-yun,Yang Guang-sui,Wang Cun,Ren Yu.

[9]Overexpression of an alternative oxidase gene, OsAOX1a, improves cold tolerance in Oryza sativa L.. Li, C. R.,Liang, D. D.,Xu, R. F.,Li, L.,Li, C. R.,Liang, D. D.,Xu, R. F.,Li, H.,Zhang, Y. P.,Qin, R. Y.,Li, L.,Wei, P. C.,Yang, J. B.,Li, H.,Wei, P. C.. 2013

[10]Isolation and functional characterization of HvDREB1-a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. Xu, Zhao-Shi,Ni, Zhi-Yong,Li, Zhi-Yong,Li, Lian-Cheng,Chen, Ming,Gao, Dong-Yao,Yu, Xiu-Dao,Liu, Pei,Ma, You-Zhi.

[11]Salicylic Acid and Abiotic Stress Responses in Rice. Pal, M.,Kovacs, V.,Szalai, G.,Soos, V.,Janda, T.,Ma, X.,Liu, H.,Mei, H.. 2014

[12]Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza sativa L.. Qin, Qiu-lin,Liu, Jin-ge,Zhang, Zhen,Peng, Ri-he,Xiong, Ai-sheng,Yao, Quan-hong,Chen, Jian-min.

[13]Changes in white and brown adipose tissue microRNA expression in cold-induced mice. Tao, Cong,Qi, Desheng,Tao, Cong,Huang, Shujuan,Wang, Yajun,Zhang, Yang,Wang, Yanfang,Li, Kui,Wei, Gang.

[14]The Discrepant and Similar Responses of Genome-Wide Transcriptional Profiles between Drought and Cold Stresses in Cassava. Zeng, Changying,Ding, Zehong,Zhou, Fang,Zhou, Yufei,Yang, Ruiju,Yang, Zi,Wang, Wenquan,Peng, Ming. 2017

[15]Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Tian, Yun,Zhang, Haiwen,Pan, Xiaowu,Chen, Xiaoliang,Zhang, Zhijin,Huang, Rongfeng,Tian, Yun,Lu, Xiangyang,Zhang, Haiwen,Zhang, Zhijin,Huang, Rongfeng,Tian, Yun,Lu, Xiangyang.

[16]Molecular analysis of the annexin gene family in soybean. Wei, X. K.,Liao, W. X.,Zhang, H.,Liang, S. C.,Peng, H.,Huang, L. H.,Peng, H..

[17]Genome-wide identification of turnip mosaic virus-responsive microRNAs in non-heading Chinese cabbage by high-throughput sequencing. Wang, Zhen,Jiang, Dahua,Zhang, Changwei,Tan, Huawei,Li, Yanxiao,Lv, Shanwu,Hou, Xilin,Wang, Zhen,Jiang, Dahua,Zhang, Changwei,Tan, Huawei,Li, Yanxiao,Lv, Shanwu,Hou, Xilin,Wang, Zhen,Jiang, Dahua,Zhang, Changwei,Tan, Huawei,Li, Yanxiao,Lv, Shanwu,Hou, Xilin,Cui, Xiaoyan.

[18]Identification of volatile and softening-related genes using digital gene expression profiles in melting peach. Li, Xiong-wei,Jiang, Jun,Zhang, Li-ping,Yu, Yi,Chai, Ming-liang,Jia, Hui-juan,Gao, Zhong-shan,Li, Xiong-wei,Ye, Zheng-wen,Wang, Xiu-min,Zhou, Jing-yi,Zhang, Hui-qin,Arus, Pere. 2015

[19]Molecular characterisation of the broad-spectrum resistance to powdery mildew conferred by the Stpk-V gene from the wild species Haynaldia villosa. Qian, C.,Cui, C.,Wang, X.,Zhou, C.,Hu, P.,Li, M.,Li, R.,Xiao, J.,Wang, X.,Chen, P.,Xing, L.,Cao, A.,Qian, C.. 2017

[20]A global transcriptional analysis of Megalobrama amblycephala revealing the molecular determinants of diet-induced hepatic steatosis. Zhang, Dingdong,Lu, Kangle,Jiang, Guangzhen,Liu, Wenbin,Tian, Hongyan,Li, Xiangfei,Zhang, Dingdong,Dong, Zaijie.

作者其他论文 更多>>