Ectopic expression of the spike protein of Rice Ragged Stunt Oryzavirus in transgenic rice plants inhibits transmission of the virus to insects

文献类型: 外文期刊

第一作者: Shao, CG

作者: Shao, CG;Wu, JH;Zhou, GY;Sun, G;Peng, BZ;Lei, JL;Jin, DD;Chen, SX;Upadhyaya, NM;Waterhouse, P;Gong, ZX

作者机构:

关键词: RRSV;transgenic rice;vector transmission;viral spike protein

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN: 1380-3743

年卷期: 2003 年 11 卷 4 期

页码:

收录情况: SCI

摘要: Rice ragged stunt oryzavirus (RRSV) replicates in both its insect vector, Nilaparvata lugens, and its plant host, rice, and has a complex multi-component particle bearing spikes on its outer surface. Transgenic rice lines expressing the 39 kDa spike protein showed good resistance to infection by RRSV. Furthermore, N. lugens fed on these plants prior to feeding on RRSV-infected plants were significantly protected against RRSV infection. The viral titre in insects initially fed on transgenic plants and then on RRSV-infected plants was inversely proportional to the levels of the 39 kDa protein expressed in the transgenic plants. This suggests that the 39 kDa protein interferes with the interaction between the intact virus particles and insect cell receptors and that the spike protein of RRSV contributes to vector specificity. This approach would probably be a more environment-friendly and sustainable method of virus control than by actual eradication of insect vectors.

分类号:

  • 相关文献

[1]Suppression of Jasmonic Acid-Mediated Defense by Viral-Inducible MicroRNA319 Facilitates Virus Infection in Rice. Zhang, Chao,Ding, Zuomei,Wu, Kangcheng,Yang, Liang,Li, Yang,Yang, Zhen,Shi, Shan,Liu, Xiaojuan,Zheng, Luping,Wei, Juan,Du, Zhenguo,Wu, Zujian,Wu, Jianguo,Zhao, Shanshan,Yang, Zhirui,Wang, Yu,Li, Yi,Wu, Jianguo,Zhang, Aihong,Miao, Hongqin. 2016

[2]Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference. Ma, Jin,Song, Yunzhi,Wu, Bin,Li, Kaidong,Zhu, Changxiang,Wen, Fujiang,Jiang, Mingsong. 2011

[3]Production of marker-free and RSV-resistant transgenic rice using a twin T-DNA system and RNAi. Jiang, Yayuan,Sun, Lin,Li, Kaidong,Song, Yunzhi,Zhu, Changxiang,Jiang, Mingsong.

[4]Dimeric artificial microRNAs mediate high resistance to RSV and RBSDV in transgenic rice plants. Sun, Lin,Lin, Chao,Du, Jinwen,Song, Yunzhi,Liu, Hongmei,Zhou, Shumei,Wen, Fujiang,Zhu, Changxiang,Jiang, Mingsong.

[5]Characteristics of CO2 exchange and chlorophyll fluorescence of transgenic rice with C-4 genes. Huang, XQ,Jiao, DM,Chi, W,Ku, MSB. 2002

[6]The characteristics of CO2 assimilation of photosynthesis and chlorophyll fluorescence in transgenic PEPC rice. Jiao, DM,Li, X,Huang, XQ,Wei, C,Kuang, TY,Maurice, KSB. 2001

[7]Establishment of a rice transgene flow model for predicting maximum distances of gene flow in Southern China. Yao, Kemin,Hu, Ning,Chen, Wanlong,Li, Renzhong,Yuan, Qianhua,Wang, Feng,Qian, Qian. 2008

[8]Expression of an elicitor-encoding gene from Magnaporthe grisea enhances resistance against blast disease in transgenic rice. Qiu, Dewen,Mao, Jianjun,Yang, Xiufen,Zeng, Hongmei. 2009

[9]Isolation of the endosperm-specific LPAAT gene promoter from coconut (Cocos nucifera L.) and its functional analysis in transgenic rice plants. Zheng, Yusheng,Wang, Zhekui,Li, Dongdong,Xu, Li,Zhou, Peng,Ye, Rongjian,Lin, Yongjun,Ye, Rongjian,Lin, Yongjun. 2010

[10]Lethal and Sub-Lethal Effects of Transgenic Rice Containing cry1Ac and CpTI Genes on the Pink Stem Borer, Sesamia inferens (Walker). Han Lan-zhi,Hou Mao-lin,Wu Kong-ming,Peng Yu-fa,Wang Feng. 2011

[11]Event-specific qualitative and quantitative detection of transgenic rice Kefeng-6 by characterization of the transgene flanking sequence. Wang, Wei-Xia,Lai, Feng-Xiang,Fu, Qiang,Zhu, Ting-Heng. 2011

[12]Transgenic fertile japonica rice plants expressing a modified crylA(b) gene resistant to yellow stem borer. Wu, C,Fan, Y,Zhang, C,Oliva, N,Datta, SK. 1997

[13]Impacts of transgenic cry1Ab rice on non-target planthoppers and their main predator Cyrtorhinus lividipennis (Hemiptera : Miridae) - A case study of the compatibility of Bt rice with biological control. Liu, Zhi-Cheng,Ye, Gong-yin,Shen, Zhi-cheng,Hu, Cui,Peng, Yu-fa,Altosaar, Illimar,Shelton, Anthony M.. 2007

[14]Functional and numerical responses of Cyrtorhinus lividipennis to eggs of Nilaparvata lugens are not affected by genetically modified herbicide-tolerant rice. Huang Qian,Long Li-ping,Ling Yan,Huang Suo-sheng,Wu Bi-qiu,Huang Feng-kuan,Cai Jian-he,Chen Yu-chong,Xiao Guo-ying. 2015

[15]Efficient Agrobacterium-mediated transformation of rice by phosphomannose isomerase/mannose selection. Ding Zai-Song,Zhao Ming,Jing Yu-Xiang,Li Liang-Bi,Kuang Ting-Nin. 2006

[16]Characterization of competitive interactions in the coexistence of Bt-transgenic and conventional rice. Liu, Yongbo,Li, Junsheng,Ge, Feng,Liang, Yuyong,Wu, Gang. 2015

[17]Characterization of OsDREB6 responsive to osmotic and cold stresses in rice. Ke, Ya-Guang,Yang, Zhi-Jun,Luo, Li-Jun,Ke, Ya-Guang,Yu, Shun-Wu,Li, Tian-Fei,Wu, Jin-Hong,Gao, Huan,Luo, Li-Jun,Fu, Ya-Ping.

[18]Baseline susceptibility of Cnaphalocrocis medinalis (Lepidoptera : Pyralidae) to Bacillus thuringiensis toxins in China. Hou, M. L.,Peng, Y. F.,Liu, P. L..

[19]Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wx(b) supercript stop pre-mRNAs in rice (Oryza sativa L.). Zeng, Dali,Yan, Meixian,Wang, Yonghong,Liu, Xinfang,Qian, Qian,Li, Jiayang.

[20]Transgenic rice plants expressing a fused protein of Cry1Ab/Vip3H has resistance to rice stem borers under laboratory and field conditions. Tian, Jun-Ce,Shen, Zhi-Chen,Hu, Cui,Ye, Gong-Yin,Chen, Yang,Tian, Jun-Ce,Shen, Zhi-Chen,Hu, Cui,Ye, Gong-Yin,Peng, Yu-Fa,Guo, Yu-Yuan.

作者其他论文 更多>>