An RNA-Seq screen of the dithiothreitol-induced apoptosis response in chicken cardiomyocytes

文献类型: 外文期刊

第一作者: Wan, Chunyun

作者: Wan, Chunyun;Wan, Chunyun;Xiang, Jinmei;Yang, Shijin;Li, Youwen;Guo, Dingzong;Xiang, Jinmei;Guo, Rui

作者机构:

关键词: RNA-Seq;apoptosis;cardiomyocytes;apoptosis inducer;DTT

期刊名称:INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY ( 影响因子:0.252; 五年影响因子:1.188 )

ISSN: 1936-2625

年卷期: 2017 年 10 卷 2 期

页码:

收录情况: SCI

摘要: Cardiomyocytes in postnatal heart are terminally differentiated and thus possess limited capacity to regenerate. Loss of cardiomyocytes through apoptosis and necrosis can lead to heart failure and other serious consequences. Compared to mammals, substantially less research has been conducted on chicken cardiomyocytes; thus, the apoptosis pathways and many relevant genes remain unknown. To elucidate the pathways and genes involved in chicken myocardial cell apoptosis, primary cultures of chicken embryo cardiomyocytes were sham-treated or exposed to the apoptosis inducer dithiothreitol (DTT), and RNA-Seq with technical replicates conducted to identify differentially expressed genes and transcripts. Relevant differentially expressed transcripts were used to construct a protein-protein interactive network for chicken apoptosis. Sequencing detected a total of 19,268 known genes and 2,160 novel genes. In the DTT treatment group, 6468 genes showed significant differential expression based on DEseq analysis, of which 47.99% were upregulated and 52.01% downregulated. The initiation of apoptosis was primarily dependent on caspase-8 and caspase-9, whereas the execution stage was dependent on caspase-3. Up-regulated genes also included many involved in the WNT and MAPK pathways. Repression of apoptosis was primarily dependent on Bcl-2, IAP, and SIVA. These results provide a foundation for detailed analysis of avian myocardial apoptosis, including genes and LncRNAs that constitute, regulate, or link various pro-and anti-apoptotic pathways.

分类号:

  • 相关文献

[1]Bovine serum albumin in saliva mediates grazing response in Leymus chinensis rleevealed by RNA sequencing. Huang, Xin,Peng, Xianjun,Zhang, Lexin,Chen, Shuangyan,Cheng, Liqin,Liu, Gongshe,Huang, Xin,Peng, Xianjun,Huang, Xin,Zhang, Lexin. 2014

[2]Cloning and characterization of the stress-induced bZIP gene ZmbZIP60 from maize. Wang, Bo,Wang, Jianhua,Wang, Guoying,Wang, Bo,Zheng, Jun,Liu, Yunjun,Wang, Guoying.

[3]Genome-wide characterization of differentially expressed genes provides insights into regulatory network of heat stress response in radish (Raphanus sativus L.). Wang, Ronghua,Xu, Liang,Wang, Yan,Liu, Liwang,Wang, Ronghua,Mei, Yi,Guo, Jun,Zhu, Xianwen. 2018

[4]Transcriptome Analysis of Sucrose Metabolism during Bulb Swelling and Development in Onion (Allium cepa L.). Zhang, Chunsha,Zhang, Hongwei,Liang, Yi,Zhan, Zongxiang,Liu, Bingjiang,Chen, Zhentai. 2016

[5]Expression profiles of a cytoplasmic male sterile line of Gossypium harknessii and its fertility restorer and maintainer lines revealed by RNA-Seq. Han, Zongfu,Deng, Yongsheng,Kong, Fanjin,Wang, Zongwen,Shen, Guifang,Wang, Jinghui,Duan, Bing,Li, Ruzhong,Qin, Yuxiang. 2017

[6]Transcriptome and Differential Expression Profiling Analysis of the Mechanism of Ca2+ Regulation in Peanut (Arachis hypogaea) Pod Development. Yang, Sha,Zhang, Jialei,Geng, Yun,Guo, Feng,Meng, Jingjing,Li, Xinguo,Li, Lin,Wang, Jianguo,Sui, Na,Wan, Shubo. 2017

[7]Genome-wide comparative transcriptome analysis of CMS-D2 and its maintainer and restorer lines in upland cotton. Jianyong Wu,Wu, Jianyong,Xing, Chaozhu,Meng Zhang,Bingbing Zhang,Xuexian Zhang,Liping Guo,Tingxiang Qi,Hailin Wang,Jinfa Zhang,Chaozhu Xing. 2017

[8]Early Transcriptomic Adaptation to Na2CO3 Stress Altered the Expression of a Quarter of the Total Genes in the Maize Genome and Exhibited Shared and Distinctive Profiles with NaCl and High pH Stresses. Zhang, Li-Min,Liu, Xiang-Guo,Han, Si-Ping,Hao, Dong-Yun,Zhang, Li-Min,Qu, Xin-Ning,Yu, Ying,Dou, Yao,Xu, Yao-Yao,Hao, Dong-Yun,Zhang, Li-Min,Jing, Hai-Chun. 2013

[9]Uncovering Male Fertility Transition Responsive miRNA in a Wheat Photo-Thermosensitive Genic Male Sterile Line by Deep Sequencing and Degradome Analysis. Bai, Jian-Fang,Wang, Yu-Kun,Wang, Peng,Duan, Wen-Jing,Yuan, Shao-Hua,Sun, Hui,Yuan, Guo-Liang,Ma, Jing-Xiu,Wang, Na,Zhang, Feng-Ting,Zhang, Li-Ping,Zhao, Chang-Ping,Bai, Jian-Fang,Wang, Yu-Kun,Wang, Peng,Duan, Wen-Jing,Yuan, Shao-Hua,Sun, Hui,Yuan, Guo-Liang,Ma, Jing-Xiu,Wang, Na,Zhang, Feng-Ting,Zhang, Li-Ping,Zhao, Chang-Ping,Wang, Peng,Duan, Wen-Jing. 2017

[10]De novo assembly of pen shell (Atrina pectinata) transcriptome and screening of its genic microsatellites. Sun, Xiujun,Li, Dongming,Liu, Zhihong,Zhou, Liqing,Wu, Biao,Yang, Aiguo,Sun, Xiujun,Li, Dongming,Liu, Zhihong,Zhou, Liqing,Wu, Biao,Yang, Aiguo. 2017

[11]A Novel AP2/ERF Transcription Factor CR1 Regulates the Accumulation of Vindoline and Serpentine in Catharanthus roseus. Gao, Fangyuan,Ren, Juansheng,Lu, Xianjun,Ren, Guangjun,Wang, Rui. 2017

[12]RNA-Seq Analyses for Two Silkworm Strains Reveals Insight into Their Susceptibility and Resistance to Beauveria bassiana Infection. Xing, Dongxu,Jiang, Liang,Xia, Qingyou,Xing, Dongxu,Yang, Qiong,Li, Qingrong,Xiao, Yang,Ye, Mingqiang. 2017

[13]RNA-seq analysis of unintended effects in transgenic wheat overexpressing the transcription factor GmDREB1. Jiang, Qiyan,Niu, Fengjuan,Sun, Xianjun,Hu, Zheng,Li, Xinhai,Ma, Youzhi,Zhang, Hui. 2017

[14]Transcriptomic Analysis Identifies Candidate Genes and Gene Sets Controlling the Response of Porcine Peripheral Blood Mononuclear Cells to Poly I:C Stimulation. Wang, Jiying,Wang, Yanping,Wang, Huaizhong,Wu, Ying,Guo, Jianfeng,Wang, Haifei,Liu, Jian-Feng. 2016

[15]De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissue. Wu, Shuanghua,Lei, Jianjun,Chen, Guoju,Cao, Bihao,Chen, Changming,Chen, Hancai. 2017

[16]De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments. Li, Jin,Liu, Hailiang,Xia, Wenwen,Mu, Jianqiang,Feng, Yujie,Liu, Ruina,Wang, Aiying,Lin, Zhongping,Zhu, Jianbo,Chen, Xianfeng,Liu, Hailiang,Yan, Panyao,Chen, Xianfeng,Lin, Zhongping,Guo, Yong. 2017

[17]Functional Genomic Analysis of Aspergillus flavus Interacting with Resistant and Susceptible Peanut. Wang, Houmiao,Lei, Yong,Yan, Liying,Wan, Liyun,Ren, Xiaoping,Chen, Silong,Jiang, Huifang,Liao, Boshou,Wang, Houmiao,Lei, Yong,Yan, Liying,Wan, Liyun,Ren, Xiaoping,Chen, Silong,Jiang, Huifang,Liao, Boshou,Dai, Xiaofeng,Guo, Wei. 2016

[18]Integrated analysis of mRNA and miRNA expression profiles in livers of Yimeng black pigs with extreme phenotypes for backfat thickness. Li, Wentong,Yang, Yalan,Zhou, Rong,Li, Kui,Li, Wentong,Liu, Shuai,Li, Xiuxiu,Wang, Yingping,Tang, Hui,Li, Wentong,Yang, Yalan,Liu, Ying,Zhang, Yanmin,Zhou, Rong,Li, Kui,Li, Kui. 2017

[19]Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). Li, Chun-Fang,Wang, Xin-Chao,Yao, Ming-Zhe,Chen, Liang,Yang, Ya-Jun,Zhu, Yan,Yu, Yao,Zhao, Qiong-Yi,Li, Xuan,Wang, Sheng-Jun,Luo, Da. 2015

[20]The Eukaryote-Like Serine/Threonine Kinase STK Regulates the Growth and Metabolism of Zoonotic Streptococcus suis. Zhang, Chunyan,Sun, Wen,Dong, Mengmeng,Liu, Wanquan,Li, Lu,Xu, Zhuofei,Zhou, Rui,Tan, Meifang,Gao, Ting,Li, Lu,Xu, Zhuofei,Zhou, Rui. 2017

作者其他论文 更多>>