A chimeric Rfo gene generated by intergenic recombination cosegregates with the fertility restorer phenotype for cytoplasmic male sterility in radish

文献类型: 外文期刊

第一作者: Wang, Zhi Wei

作者: Wang, Zhi Wei;Zhang, Li Jun;Chen, Jie;Zhou, Yuan;Wang, Ting;Wang, Zhi Wei;Xiang, Chang Ping;Zhang, Li Jun;Chen, Jie;Mei, Shi Yong

作者机构:

关键词: Cosegregate;Cytoplasmic male sterility;Fertility restorer;Intergenic recombination;Radish

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN: 1380-3743

年卷期: 2010 年 25 卷 2 期

页码:

收录情况: SCI

摘要: In this work, we have identified a chimeric pentatricopeptide repeat (PPR)-encoding gene cosegregating with the fertility restorer phenotype for cytoplasmic male sterility (CMS) in radish. We have constructed a CMS-Rf system consisting of sterile line '9802A2', maintainer line '9802B2' and restorer line '2007H'. F(2) segregating population analysis indicated that male fertility is restored by a single dominant gene in the CMS-Rf system described above. A PPR gene named Rfoc was found in the restorer line '2007H'. It cosegregated with the fertility restorer in the F(2) segregating population which is composed of 613 fertile plants and 187 sterile plants. The Rfoc gene encodes a predicted protein 687 amino acids in length, comprising 16 PPR domains and with a putative mitochondrial targeting signal. Sequence alignment showed that recombination between the 5' region of Rfob (EU163282) and the 3' region of PPR24 (AY285675) resulted in Rfoc, indicating a recent unequal crossing-over event between Rfo and PPR24 loci at a distance of 5.5 kb. The sterile line '9802A2' contains the rfob gene. In the F(2) population, Rfoc and rfob were observed to fit a segregation ratio 1:2:1 showing that Rfoc was allelic to Rfo. Previously we have reported that a fertile line '2006H', which carries the recessive rfob gene, is able to restore the male fertility of CMS line '9802A1' (Wang et al. in Theor Appl Genet 117:313-320, 2008). However, here when conducting a cross between the fertile line '2006H' and CMS line '9802A2, the resulting plants were male sterile, which shows that sterile line '9802A2' possesses a different nuclear background compared to '9802A1'. Based on these results, the genetic model of fertility restoration for radish CMS is also discussed.

分类号:

  • 相关文献

[1]Heterozygous alleles restore male fertility to cytoplasmic male-sterile radish (Raphanus sativus L.): a case of overdominance. Wang, Zhi Wei,Wang, Chuan,Gao, Lei,Zhou, Yuan,Wang, Ting,Wang, Chuan,Mei, Shi Yong,Xiang, Chang Ping. 2013

[2]Comparative Transcriptome Profile of the Cytoplasmic Male Sterile and Fertile Floral Buds of Radish (Raphanus sativus L.). Mei, Shiyong,Liu, Touming,Liu, Touming,Wang, Zhiwei. 2016

[3]Development of PCR-based markers linked to a restorer gene for cytoplasmic male sterility in radish (Raphanus sativus L.). Wang, Zhiwei,Xiang, Changping,Mei, Shiyong. 2006

[4]Identification of promoter exchange at a male fertility restorer locus for cytoplasmic male sterility in radish (Raphanus sativus L.). Wang, Zhi Wei,Cai, Qing Ze,Wang, Zhi Wei,De Wang, Chuan,Gao, Lei,Zhou, Yuan,Wang, Ting,De Wang, Chuan,Mei, Shi Yong,Mei, Shi Yong.

[5]Event-specific qualitative and quantitative PCR detection methods for Transgenic rapeseed hybrids MS1 x RF1 and MS1 x RF2. Wu, Yuhua,Wu, Gang,Xiao, Ling,Lu, Changming. 2007

[6]Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Wang, Shufen,He, Qiwei,Liu, Xianxian,Xu, Wenling,Li, Libin,Gao, Jianwei,Wang, Fengde,Wang, Xiufeng. 2012

[7]INTERCROPPING DIFFERENT VARIETIES OF RADISH CAN INCREASE CADMIUM ACCUMULATION IN RADISH. Liao, Ming'an,Mei, Luoyin,Liu, Qihua,Shi, Jun,Sun, Jinlong.

[8]Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.). Sun, Xiaochuan,Wang, Yan,Xu, Liang,Li, Chao,Zhang, Wei,Luo, Xiaobo,Jiang, Haiyan,Liu, Liwang,Sun, Xiaochuan,Sun, Xiaochuan,Wang, Yan,Xu, Liang,Luo, Xiaobo,Liu, Liwang. 2017

[9]Cadmium availability and uptake by radish (Raphanus sativus) grown in soils applied with wheat straw or composted pig manure. Shan, Hong,Su, Shiming,Liu, Rongle,Li, Shutian.

[10]RadishBase: A Database for Genomics and Genetics of Radish. Shen, Di,Li, Xixiang,Shen, Di,Sun, Honghe,Huang, Mingyun,Zheng, Yi,Fei, Zhangjun,Sun, Honghe,Fei, Zhangjun. 2013

[11]Comprehensive analysis of expressed sequence tags from cultivated and wild radish (Raphanus spp.). Shen, Di,Qiu, Yang,Li, Xixiang,Shen, Di,Sun, Honghe,Huang, Mingyun,Zheng, Yi,Fei, Zhangjun,Sun, Honghe,Fei, Zhangjun. 2013

[12]Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.). He, Qunyan,Hu, Tianhua,Bao, Chonglai,Mao, Weihai,He, Qunyan,Cai, Zexi,Liu, Huijun,Jin, Weiwei. 2015

[13]Identification of Optimal Reference Genes for Expression Analysis in Radish (Raphanus sativus L.) and Its Relatives Based on Expression Stability. Duan, Mengmeng,Wang, Jinglei,Zhang, Xiaohui,Yang, Haohui,Wang, Haiping,Qiu, Yang,Song, Jiangping,Li, Xixiang,Duan, Mengmeng,Guo, Yangdong. 2017

[14]Allelopathic effects of Conyza canadesis the germination and growth of wheat, sorghum, cucumber, rape and radish. Gao, Xingxiang,Li, Mei,Gao, Zongyun,Zhang, Hongjun,Sun, Zuowen.

[15]Genetic diversity and evolutionary relationship analyses within and among Raphanus species using EST-SSR markers. Wang, Qingbiao,Zhang, Li,Zheng, Pengjing,Wang, Qingbiao,Zhang, Li,Zheng, Pengjing.

[16]Stress-responsive gene RsICE1 from Raphanus sativus increases cold tolerance in rice. Man, Lili,Xiang, Dianjun,Wang, Lina,Qi, Guochao,Zhang, Weiwei,Wang, Xiaodong.

[17]Effect of N Management on Root Yield and N Uptake of Radishes in Southern China. Yuan, Wei-Ling,Deng, Xiao-hui,Gan, Cai-xia,Cui, Lei,Wang, Qing-fang,Yuan, Shang-yong.

[18]Expression profiles of a cytoplasmic male sterile line of Gossypium harknessii and its fertility restorer and maintainer lines revealed by RNA-Seq. Han, Zongfu,Deng, Yongsheng,Kong, Fanjin,Wang, Zongwen,Shen, Guifang,Wang, Jinghui,Duan, Bing,Li, Ruzhong,Qin, Yuxiang. 2017

[19]Development of a candidate gene marker for Rf (1) based on a PPR gene in cytoplasmic male sterile CMS-D2 Upland cotton. Jianyong Wu,Xiuxia Cao,Liping Guo,Tingxiang Qi,Hailing Wang,Huini Tang,Jinfa Zhang,Chaozhu Xing.

[20]Detection of the Diversity of Cytoplasmic Male Sterility Sources in Broccoli (Brassica Oleracea var. Italica) Using Mitochondrial Markers. Shu, Jinshuai,Liu, Yumei,Li, Zhansheng,Zhang, Lili,Fang, Zhiyuan,Yang, Limei,Zhuang, Mu,Zhang, Yangyong,Lv, Honghao. 2016

作者其他论文 更多>>