Identification, Expression, and Functional Analysis of the Fructokinase Gene Family in Cassava

文献类型: 外文期刊

第一作者: Yao, Yuan

作者: Yao, Yuan;Li, Rui-Mei;Fu, Shao-Ping;Duan, Rui-Jun;Liu, Jiao;Guo, Jian-Chun;Geng, Meng-Ting;Wang, Yun-Lin;Chen, Xia;Shang, Lu;Lu, Xiao-Hua;Li, Zhan;Hu, Xin-Wen;Wu, Xiao-Hui;Sun, Chong

作者机构:

关键词: cassava;fructokinase;gene expression;yeast complementation;enzyme activities

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.923; 五年影响因子:6.132 )

ISSN: 1422-0067

年卷期: 2017 年 18 卷 11 期

页码:

收录情况: SCI

摘要: Fructokinase (FRK) proteins play important roles in catalyzing fructose phosphorylation and participate in the carbohydrate metabolism of storage organs in plants. To investigate the roles of FRKs in cassava tuber root development, seven FRK genes (MeFRK1-7) were identified, and MeFRK1-6 were isolated. Phylogenetic analysis revealed that the MeFRK family genes can be divided into alpha (MeFRK1, 2, 6, 7) and beta (MeFRK3, 4, 5) groups. All the MeFRK proteins have typical conserved regions and substrate binding residues similar to those of the FRKs. The overall predicted three-dimensional structures of MeFRK1-6 were similar, folding into a catalytic domain and a beta-sheet lid region, forming a substrate binding cleft, which contains many residues involved in the binding to fructose. The gene and the predicted three-dimensional structures of MeFRK3 and MeFRK4 were the most similar. MeFRK1-6 displayed different expression patterns across different tissues, including leaves, stems, tuber roots, flowers, and fruits. In tuber roots, the expressions of MeFRK3 and MeFRK4 were much higher compared to those of the other genes. Notably, the expression of MeFRK3 and MeFRK4 as well as the enzymatic activity of FRK were higher at the initial and early expanding tuber stages and were lower at the later expanding and mature tuber stages. The FRK activity of MeFRK3 and MeFRK4 was identified by the functional complementation of triple mutant yeast cells that were unable to phosphorylate either glucose or fructose. The gene expression and enzymatic activity of MeFRK3 and MeFRK4 suggest that they might be the main enzymes in fructose phosphorylation for regulating the formation of tuber roots and starch accumulation at the tuber root initial and expanding stages.

分类号:

  • 相关文献

[1]Structure, Expression, and Functional Analysis of the Hexokinase Gene Family in Cassava. Geng, Meng-Ting,Wang, Yun-Lin,Hu, Xin-Wen,Yao, Yuan,Li, Rui-Mei,Fu, Shao-Ping,Duan, Rui-Jun,Liu, Jiao,Guo, Jian-Chun,Wu, Xiao-Hui,Sun, Chong. 2017

[2]Genome-Wide Identification, 3D Modeling, Expression and Enzymatic Activity Analysis of Cell Wall Invertase Gene Family from Cassava (Manihot esculenta Crantz). Yao, Yuan,Geng, Meng-Ting,Liu, Jiao,Li, Rui-Mei,Guo, Jian-Chun,Wu, Xiao-Hui,Hu, Xin-Wen. 2014

[3]Genome-Wide Identification, Expression, and Activity Analysis of Alkaline/Neutral Invertase Gene Family from Cassava (Manihot esculenta Crantz). Yao, Yuan,Geng, Meng-Ting,Liu, Jiao,Li, Rui-Mei,Guo, Jian-Chun,Yao, Yuan,Wu, Xiao-Hui,Hu, Xin-Wen.

[4]Isolation and expression features of hexose kinase genes under various abiotic stresses in the tea plant (Camellia sinensis). Li, Na-na,Qian, Wen-jun,Wang, Lu,Cao, Hong-li,Hao, Xin-yuan,Yang, Ya-jun,Wang, Xin-chao,Li, Na-na,Wang, Lu,Cao, Hong-li,Hao, Xin-yuan,Yang, Ya-jun,Wang, Xin-chao,Qian, Wen-jun.

[5]Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava. Wei, Yunxie,Shi, Haitao,Xia, Zhiqiang,Tie, Weiwei,Ding, Zehong,Yan, Yan,Wang, Wenquan,Hu, Wei,Li, Kaimian. 2016

[6]Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes. Hu, Wei,Xia, Zhiqiang,Yan, Yan,Ding, Zehong,Tie, Weiwei,Zou, Meiling,Wei, Yunxie,Lu, Cheng,Hou, Xiaowan,Wang, Wenquan,Peng, Ming,Wang, Lianzhe. 2015

[7]Isolation and Characterization of Ftsz Genes in Cassava. Geng, Meng-Ting,Yao, Yuan,Li, Rui-Mei,Fu, Shao-Ping,Duan, Rui-Jun,Liu, Jiao,Guo, Jian-Chun,Geng, Meng-Ting,Min, Yi,Chen, Xia,Fan, Jie,Yuan, Shuai,Wang, Lei,Zhang, Fan,Shang, Lu,Wang, Yun-Lin,Hu, Xin-Wen,Sun, Chong. 2017

[8]Genome-Wide Identification and Expression Analysis of the KUP Family under Abiotic Stress in Cassava (Manihot esculenta Crantz). Ou, Wenjun,Li, Kaimian,Mao, Xiang,Huang, Chao,Tie, Weiwei,Yan, Yan,Ding, Zehong,Wu, Chunlai,Xia, Zhiqiang,Wang, Wenquan,Li, Kaimian,Hu, Wei,Zhou, Shiyi. 2018

[9]Isolation and characterization of a C-repeat binding factor (CBF)-like gene in cassava (Manihot esculenta Crantz). Li, Ruimei,Fan, Jie,Yang, Chenglong,Yao, Yuan,Zhou, Yang,Duan, Ruijun,Liu, Jiao,Fu, Shaoping,Guo, Jianchun,Li, Ruimei,Fan, Jie,Yang, Chenglong,Yao, Yuan,Zhou, Yang,Duan, Ruijun,Liu, Jiao,Fu, Shaoping,Guo, Jianchun,Ji, Yimeng,Fan, Jie,Yang, Chenglong,Yao, Yuan,Hu, Xinwen. 2014

[10]Cloning of Fructokinase Gene from Longan Fruit and Bioinformatics Analysis. Shuai, L.,Li, J.,Wu, Z. X.,Han, D. M.. 2014

[11]Isolation and Expression Analysis of Fructokinase Genes from Citrus. Qin, QP,Zhang, SL,Chen, JW,Xie, M,Jin, YF,Chen, KS,Asghar, S.

[12]The AMT1 family genes from Malus robusta display differential transcription features and ammonium transport abilities. Li, Hui,Yang, Qing-song,Liu, Wei,Lin, Jing,Chang, You-hong.

[13]Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. Li, Suzhen,Huang, Yaqun,Zhu, Liying,Zhao, Yongfeng,Guo, Jinjie,Chen, Jingtang,Li, Suzhen,Zhou, Xiaojin,Zhang, Shaojun,Chen, Rumei. 2013

[14]Genome-Wide Identification, Cloning and Functional Analysis of the Zinc/Iron-Regulated Transporter-Like Protein (ZIP) Gene Family in Trifoliate Orange (Poncirus trifoliata L. Raf.). Fu, Xing-Zheng,Zhou, Xue,Xing, Fei,Ling, Li-Li,Chun, Chang-Pin,Cao, Li,Peng, Liang-Zhi,Fu, Xing-Zheng,Zhou, Xue,Ling, Li-Li,Chun, Chang-Pin,Cao, Li,Peng, Liang-Zhi,Aarts, Mark G. M.. 2017

[15]Improved mycelia and polysaccharide production of Grifola frondosa by controlling morphology with microparticle Talc. Tao, Ting-Lei,Cui, Feng-Jie,Chen, Xiao-Xiao,Sun, Wen-Jing,Huang, Da-Ming,Liu, Wei-Min,Zhang, Jinsong,Yang, Yan,Wu, Di,Cui, Feng-Jie,Sun, Wen-Jing. 2018

[16]Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau. Jin, K.,Cai, D. X.,Jin, J. Y.,Jin, K.,Sleutel, S.,Buchan, D.,De Neve, S.,Gabriels, D.. 2009

[17]Effects of seagrass leaf litter decomposition on sediment organic carbon composition and the key transformation processes. Liu, SongLin,Jiang, ZhiJian,Wu, YunChao,Zhao, ChunYu,Zhang, JingPing,Shen, Yuan,Huang, XiaoPing,Liu, SongLin,Wu, YunChao,Zhao, ChunYu,Shen, Yuan,Huang, XiaoPing,Deng, YiQin. 2017

[18]Impact of Bt-transgenic rice (SHK601) on soil ecosystems in the rhizosphere during crop development. Wei, M.,Tan, F.,Zhu, H.,Cheng, K.,Wu, X.,Wang, J.,Zhao, K.,Tang, X.,Wei, M.,Tan, F.,Zhu, H.,Cheng, K.,Wu, X.,Wang, J.,Zhao, K.,Tang, X..

[19]Effect of dietary carbohydrate levels on growth performance, body composition, intestinal and hepatic enzyme activities, and growth hormone gene expression of juvenile golden pompano, Trachinotus ovatus. Zhou, Chuanpeng,Niu, Jin,Lin, Heizhao,Huang, Zhong,Tan, Xiaohong,Zhou, Chuanpeng,Ge, Xianping,Zhou, Chuanpeng.

[20]The effect of supplemental manganese in broiler diets on abdominal fat deposition and meat quality. Lu, L.,Ji, C.,Luo, X. G.,Liu, B.,Yu, S. X.. 2006

作者其他论文 更多>>