Intercropping Different Legumes in Tea Plantation Improves Soil Properties and Tea Quality Components by Regulating Rhizosphere Soil Microorganisms

文献类型: 外文期刊

第一作者: Chen, Mengjuan

作者: Chen, Mengjuan;Zhou, Pinqian;Bao, Qiang;Wang, Hua;Wang, Yuanjiang;Fu, Haiping

作者机构:

关键词: intercropping legumes; soil nutrients; tea qualities; microorganism; CNP cycling genes

期刊名称:AGRONOMY-BASEL ( 影响因子:3.4; 五年影响因子:3.8 )

ISSN:

年卷期: 2025 年 15 卷 3 期

页码:

收录情况: SCI

摘要: Intercropping legumes is an effective and sustainable planting pattern that has the benefit of decreasing chemical fertilizer input and improving the soil environment. However, the effects of chemical fertilizer reduction and intercropping different legumes on soil nutrients, microorganisms, and tea quality remain elusive. Hereby, compared with 100% chemical fertilizer (CK), Sesbania cannabina (SC) and Crotalaria pallida Blanco (CP) were selected as the intercropped plant with 70% chemical fertilizer to investigate its effect on soil nutrients, microorganisms, and tea quality. The results showed that compared with monocropping, intercropping legumes had greater concentrations of the soil labile organic matter, nitrate nitrogen, ammonia nitrogen, inorganic nitrogen, and alkali-hydrolyzable nitrogen. Intercropping systems significantly enhanced the content of non-ester-type catechins (catechin and gallocatechin) and ester-type catechins (epicatechin gallate). In SC, the content of gallocatechin, catechin, and epicatechin gallate increased by 146.67%, 107.69%, and 21.05%, respectively, while in CP, the content of these three compounds increased by 166.67%, 84.62%, and 19.08%, respectively. Significant differences in microbial composition were also observed under different systems. Actinobacteria, Rhodoplanes, and Thaumarchaeota were obviously enhanced in SC, while Rhodanobacter, Pseudolabrys, and Pedosphaera were manifestly improved in CP compared to those in the monoculture. Moreover, intercropping legumes significantly increased the abundances of CNP cycling functional genes, such as gpmB, mch, accD6, pgi-pmi, mcr, glmS, ACOX1 and fadB (carbohydrate metabolism), nirD and narI (nitrification), pmoB-amoB and hao (dissimilatory N reduction), and phoN (organic phosphoester hydrolysis). The relationship between intercropping systems and tea qualities was mainly established by soil nutrition and the abundance of C and N cycling functional microorganisms. This study provides more information on the relationship between soil nutrients, functional genes of microorganisms, and tea quality under tea/legume intercropping systems in tea plantations and offers a basis for the higher-performance intercropping pattern.

分类号:

  • 相关文献
作者其他论文 更多>>