An electrochemiluminescence aptasensor switch for aldicarb recognition via ruthenium complex-modified dendrimers on multiwalled carbon nanotubes

文献类型: 外文期刊

第一作者: Li, Shuhuai

作者: Li, Shuhuai;Liu, Chunhua;Han, Bingjun;Luo, Jinhui;Yin, Guihao;Li, Shuhuai;Liu, Chunhua;Han, Bingjun;Luo, Jinhui;Yin, Guihao

作者机构:

关键词: Pesticide residue;Cyclic voltammetry;Electrochemical impedance spectroscopy;Transmission electron microscopy;X-ray diffraction;X-ray photoelectron spectroscopy

期刊名称:MICROCHIMICA ACTA ( 影响因子:5.833; 五年影响因子:5.357 )

ISSN: 0026-3672

年卷期: 2017 年 184 卷 6 期

页码:

收录情况: SCI

摘要: The authors describe an electrochemiluminescence (ECL) based aptasensor for the pesticide aldicarb. The method is based on effective ECL energy transfer that occurs between the ruthenium(II) bipyridyl complex [referred to as Ru(bpy)(3) (2+)] and gold nanoparticles (AuNPs). More specifically, multiwalled carbon nanotubes were modified with dendritic poly(L-arginine) labeled with Ru(bpy)(3) (2+), and the aptamers were taggedd with AuNPs. In the absence of aldicarb, the ECL emitted by Ru(bpy)(3) (2+) is enhanced by AuNPs under peak wavelength at at a wavelength of 610 nm. In the presence of aldicarb, the capture and competitive binding of aldicarb to the DNA aptamers causes their separation from the DPA6/Ru(bpy)(3) (2+)/MWCNT. As a result, ECL intensity decreases linearly with increasing aldicarb concentrations in the range between 40 pM and 4 nM, with a detection limit of 9.6 pM. This aptamer switch is highly sensitive, selective and inexpensive. Conceivably, it can be adapted to formats for the determination of other pesticide residues by using different DNA aptamers.

分类号:

  • 相关文献

[1]Green synthesis of gold nanoparticles using Citrus maxima peel extract and their catalytic/antibacterial activities. Yuan, Chun-Gang,Huo, Can,Gui, Bing,Cao, Wei-Ping. 2017

[2]Synergetic dual recognition and separation of the fungicide carbendazim by using magnetic nanoparticles carrying a molecularly imprinted polymer and immobilized beta-cyclodextrin. Li, Shuhuai,Wu, Xuejin,Zhang, Qun,Li, Pingping,Li, Shuhuai,Wu, Xuejin,Zhang, Qun,Li, Pingping.

[3]Surface properties of walnut protein from AOT reverse micelles. Liu, Fenglan,Hu, Haifang,Sun, Yali,Wang, Xianchang,Zhao, Xiaoyan,Chen, Fengliang. 2014

[4]XPS and SEM Spectroscopy Study of Hyperdispersant on Atrazine Surface. Xu Yan,Ma Chao,Zhang Ping,Cai Meng-ling,Wu Xue-min,Sun Bao-li. 2011

[5]X-ray Photoelectron Spectroscopy Study of Double Comb Shape Copolymer on Atrazine Particles Surface. Xu Yan,Ma Chao,Liu Dan,Cai Meng-Ling,Wu Xue-Min,Sun Bao-Li. 2011

[6]Quantitative analysis of Fe and Co in Co-substituted magnetite using XPS: The application of non-linear least squares fitting (NLLSF). Liu, Hongmei,Liu, Peng,Li, Ying,Wei, Gaoling,Xu, Zhen,Liu, Peng,Li, Ying.

[7]Microbial Activities' Influence on Three Kinds of Metal Material Corrosion Behaviors. Li, Xia,Chen, Haiyan,Li, Huanyuan,Chen, Pimao,Qing, Chuangxing. 2017

[8]MnO2/Polypyrrole/MnO2 multi-walled-nanotube-modified anode for high-performance microbial fuel cells. Yuan, Haoran,Deng, Lifang,Chen, Yong,Yuan, Yong,Yuan, Haoran,Deng, Lifang,Chen, Yong.

[9]A sensitive electrochemical impedance immunosensor for determination of malachite green and leucomalachite green in the aqueous environment. Zhu, Dan,Pang, Xiumei,Liu, Yue,Wang, Xue,Chen, Gang,Li, Qiangqiang.

[10]Sensitive immunoassay for the beta-agonist ractopamine based on glassy carbon electrode modified with gold nanoparticles and multi-walled carbon nanotubes in a film of poly-arginine. Wang, Peilong,Su, Xiaoou,Zhou, Ying,Zhao, Hong,He, Yujian,He, Yujian. 2014

[11]Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy. Liang, Gang,Man, Yan,Jin, Xinxin,Pan, Ligang,Liang, Gang,Man, Yan,Jin, Xinxin,Pan, Ligang,Liang, Gang,Man, Yan,Jin, Xinxin,Pan, Ligang,Liang, Gang,Liu, Xinhui.

[12]Investigations on the interfacial capacitance and the diffusion boundary layer thickness of ion exchange membrane using electrochemical impedance spectroscopy. Zhang, Wenjuan,Ma, Jun,Wang, Panpan,Liu, Huiling,Wang, Zhenghui,Shi, Fengmei.

[13]An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Liu, Na,Tan, Yanglan,Wang, Hui,Wu, Aibo,Nie, Dongxia,Zhao, Zhiyong,Liao, Yucai,Sun, Changpo.

[14]Label free electrochemical aptasensor for ultrasensitive detection of ractopamine. Wang, Peilong,Wang, Ruiguo,Su, Xiaoou,Yang, Fei,Shi, Lei,Zhou, Ying,He, Yujian,Yao, Dongsheng.

[15]Effects of the Fe-II/Cu-II Interaction on Copper Aging Enhancement and Pentachlorophenol Reductive Transformation in Paddy Soil. Wang, Yong-kui,Tao, Liang,Chen, Man-jia,Li, Fang-bai,Wang, Yong-kui,Chen, Man-jia,Wang, Yong-kui,Chen, Man-jia. 2012

[16]Reductive transformation of 2-nitrophenol by Fe(II) species in gamma-aluminum oxide suspension. Tao, Liang,Li, Fangbai,Sun, Kewen,Tao, Liang,Sun, Kewen,Feng, Chunhua,Tao, Liang,Sun, Kewen. 2009

[17]Electrochemical evidence of Fe(II)/Cu(II) interaction on titanium oxide for 2-nitrophenol reductive transformation. Tao, Liang,Li, Fangbai. 2012

[18]Environmental pH and ionic strength influence the electron-transfer capacity of dissolved organic matter. Lu, Qin,Yuan, Yong,Tao, Ya,Tang, Jia. 2015

[19]REDUCTIVE ACTIVITY OF ADSORBED Fe(II) ON IRON (OXYHYDR)OXIDES FOR 2-NITROPHENOL TRANSFORMATION. Tao, Liang,Li, Fangbai,Wang, Yongkui,Tao, Liang,Wang, Yongkui,Sun, Kewen.

[20]Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue). Dai, Juan,Deng, Dongli,Zhang, Jinzhong,Deng, Fei,He, Shuang,Deng, Dongli,Yuan, Yali,Zhang, Jinzhong.

作者其他论文 更多>>