Bif-1c Attenuates Viral Proliferation by Regulating Autophagic Flux Blockade Induced by the Rabies Virus CVS-11 Strain in N2a Cells

文献类型: 外文期刊

第一作者: Hou, Pengfei

作者: Hou, Pengfei;Guo, Yidi;Jin, Hongli;Sun, Jingxuan;Bai, Yujie;Li, Wujian;Cao, Zengguo;Zhang, Haili;Li, Yuanyuan;Huang, Pei;Wang, Hualei;Hou, Pengfei;Jin, Hongli;Li, Wujian;Cao, Zengguo;Wu, Fangfang;Yang, Songtao;Xia, Xianzhu;Li, Ling

作者机构:

关键词: Bif-1c; RABV; autophagy flux; replication

期刊名称:MICROBIOLOGY SPECTRUM ( 影响因子:3.7; 五年影响因子:5.9 )

ISSN: 2165-0497

年卷期: 2023 年 11 卷 3 期

页码:

收录情况: SCI

摘要: Autophagy can be triggered by viral infection and replication. Autophagosomes are generated and affect RABV replication, which differs by viral strain and infected cell type. Bax-interacting factor-1 (Bif-1) is a multifunctional protein involved in apoptosis, autophagy, and mitochondrial morphology. However, the associations between Bif-1 and viruses are poorly understood. As discrete Bif-1 isoforms are selectively expressed and exert corresponding effects, we evaluated the effects of neuron-specific/ubiquitous Bif-1 isoforms on rabies virus (RABV) proliferation. First, infection with the RABV CVS-11 strain significantly altered Bif-1 expression in mouse neuroblastoma (N2a) cells, and Bif-1 knockdown in turn promoted RABV replication. Overexpression of neuron-specific Bif-1 isoforms (Bif-1b/c/e) suppressed RABV replication. Moreover, our study showed that Bif-1c colocalized with LC3 and partially alleviated the incomplete autophagic flux induced by RABV. Taken together, our data reveal that neuron-specific Bif-1 isoforms impair the RABV replication process by abolishing autophagosome accumulation and blocking autophagic flux induced by the RABV CVS-11 strain in N2a cells.IMPORTANCE Autophagy can be triggered by viral infection and replication. Autophagosomes are generated and affect RABV replication, which differs by viral strain and infected cell type. Bax-interacting factor-1 (Bif-1) mainly has a proapoptotic function but is also involved in autophagosome formation. However, the association between Bif-1-involved autophagy and RABV infection remains unclear. In this study, our data reveal that a neuron-specific Bif-1 isoform, Bif-1c, impaired viral replication by unchoking autophagosome accumulation induced by RABV in N2a cells to a certain extent. Our study reveals for the first time that Bif-1 is involved in modulating autophagic flux and plays a crucial role in RABV replication, establishing Bif-1 as a potential therapeutic target for rabies.

分类号:

  • 相关文献
作者其他论文 更多>>