Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.)

文献类型: 外文期刊

第一作者: Wu, Qi

作者: Wu, Qi;Li, Shigui;Wu, Qi;Li, Dayong;Liu, Xue;Zhao, Xianfeng;Li, Xiaobing;Zhu, Lihuang;Wu, Qi;Li, Dayong;Liu, Xue;Zhao, Xianfeng;Li, Xiaobing;Zhu, Lihuang;Li, Dejun;Liu, Xue

作者机构:

关键词: OsDoff2;Dof transcription factor;plant architecture;rice (Oryza sativa L.)

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2015 年 6 卷

页码:

收录情况: SCI

摘要: Dof (DNA binding with one finger) proteins, a class of plant specific transcription factors, are involved in plant growth and developmental processes and stress responses. However, their biological functions remain to be elucidated, especially in rice (Ora sativa L.). Previously, we have reported that OsDo112 can promote rice flowering under long-day conditions. Here, we further investigated the other important agronomical traits of the transgenic plants oyerexpressing OsDof12 and found that oyerexpressing OsDof12 could lead to reduced plant height, erected leaf, shortened leaf blade, and smaller panicle resulted from decreased primary and secondary branches number. These results implied that OsDof12 is involved in rice plant architecture formation. Furthermore, we performed a series of Brassinosteroid (BR)-responsive tests and found that oyerexpression of OsDof12 could also result in BR hyposensitiyity. Of note, in WT plants the expression of OsDo112 was found up-regulated by BR treatment while in OsDo112 oyerexpression plants two positive BR signaling regulators, OsBR11 and OsBZR1, were significantly down-regulated, indicating that OsDo112 may act as a negative BR regulator in rice. Taken together, our results suggested that overexpression of OsDof12 could lead to altered plant architecture by suppressing BR signaling. Thus, OsDof12 might be used as a new potential genetic regulator for future rice molecular breeding.

分类号:

  • 相关文献

[1]Genetic variation and association mapping for 12 agronomic traits in indica rice. Lu, Qing,Zhang, Mengchen,Niu, Xiaojun,Wang, Shan,Xu, Qun,Feng, Yue,Wang, Caihong,Deng, Hongzhong,Yuan, Xiaoping,Yu, Hanyong,Wang, Yiping,Wei, Xinghua,Niu, Xiaojun. 2015

[2]Identification of a novel tillering dwarf mutant and fine mapping of the TDDL(T) gene in rice (Oryza sativa L.). Gao ZhenYu,Guo LongBiao,Liu Jian,Dong GuoJun,Hu Jiang,Qian Qian,Gao ZhenYu,Liu XiaoHui,Han Bin. 2009

[3]LEAFY HEAD2, which encodes a putative RNA-binding protein, regulates shoot development of rice. Xiong, Guo Sheng,Hu, Xing Ming,Jiao, Yong Qing,Yu, Yan Chun,Chu, Cheng Cai,Li, Jia Yang,Qian, Qian,Wang, Yong Hong. 2006

[4]A point mutation in the zinc finger motif of RID1/EHD2/OsID1 protein leads to outstanding yield-related traits in japonica rice variety Wuyunjing 7. Hu, Shikai,Dong, Guojun,Xu, Jie,Su, Yan,Shi, Zhenyuan,Ye, Weijun,Li, Yuanyuan,Li, Gengmi,Zhang, Bin,Hu, Jiang,Qian, Qian,Zeng, Dali,Guo, Longbiao. 2013

[5]Association mapping of quantitative trait loci for yield-related agronomic traits in rice (Oryza sativa L.). Xu Fei-fei,Huang Yan,Tong Chuan,Chen Ya-ling,Bao Jin-song,Jin Liang. 2016

[6]Insertion of a solo LTR retrotransposon associates with spur mutations in 'Red Delicious' apple (Malus x domestica). Han, Mengxue,Qiu, Huarong,Guo, Jing,Mu, Wenlei,Sun, Jun,Sun, Qibao,Zhou, Junyong,Lu, Lijuan,Han, Mengxue,Mu, Wenlei.

[7]Two Novel AP2/EREBP Transcription Factor Genes TaPARG Have Pleiotropic Functions on Plant Architecture and Yield-Related Traits in Common Wheat. Li, Bo,Li, Qiaoru,Mao, Xinguo,Li, Ang,Wang, Jingyi,Chang, Xiaoping,Hao, Chenyang,Zhang, Xueyong,Jing, Ruilian. 2016

[8]Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. Zhou, Zhiqiang,Hao, Zhuanfang,Li, Mingshun,Zhang, Degui,Yong, Hongjun,Zhang, Shihuang,Weng, Jianfeng,Li, Xinhai,Zhang, Chaoshu,Zhou, Yu,Wang, Zhenhua,Zeng, Xing,Di, Hong. 2016

[9]Genetic analysis and fine mapping of a dominant dwarfness gene from wild rice (Oryza barthii). Zhao, Zhigang,Zhang, Chao,Liu, Xi,Lin, Yun,Liu, Linglong,Tian, Yunlu,Chen, Liangming,Liu, Shijia,Jiang, Ling,Wan, Jianmin,Zhou, Jiawu,Tao, Dayun,Wan, Jianmin. 2018

[10]The alteration in the architecture of a T-DNA insertion rice mutant osmtd1 is caused by up-regulation of MicroRNA156f. Peng, Keqin,Huang, Zhigang,Tong, Jianhua,Kabir, Mohammed Humayun,Xiao, Langtao,Shen, Gezhi,Wang, Jianhui,Zhang, Jingzhe,Qin, Genji. 2015

[11]IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Song, Xiaoguang,Lu, Zefu,Yu, Hong,Shao, Gaoneng,Xiong, Jinsong,Meng, Xiangbing,Jing, Yanhui,Liu, Guifu,Xiong, Guosheng,Duan, Jingbo,Wang, Yonghong,Li, Jiayang,Song, Xiaoguang,Lu, Zefu,Yu, Hong,Shao, Gaoneng,Xiong, Jinsong,Meng, Xiangbing,Jing, Yanhui,Liu, Guifu,Xiong, Guosheng,Duan, Jingbo,Wang, Yonghong,Li, Jiayang,Shao, Gaoneng,Li, Jiayang,Yao, Xue-Feng,Liu, Chun-Ming,Li, Hongqing,Lu, Zefu,Xiong, Jinsong,Xiong, Guosheng. 2017

[12]Genetic analysis and fine mapping of a semi-dwarf gene in a centromeric region in rice (Oryza sativa L.). Chen, Mingjiang,Zhao, Zhigang,Chen, Liangming,Zhou, Feng,Zhong, Zhengzheng,Jiang, Ling,Wan, Jianmin,Wan, Jianmin.

[13]A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulating plant architecture in rice (Oryza sativa). Li, Hui,Jiang, Ling,Wan, Jianmin,Sun, Wei,Cheng, Zhijun,Jin, Tianyun,Ma, Xiaoding,Guo, Xiuping,Wang, Jiulin,Zhang, Xin,Wu, Fuqing,Wu, Chuanyin,Wan, Jianmin,Youn, Ji-Hyun,Kim, Seong-Ki.

[14]Genome-Wide Association Mapping Reveals the Genetic Control Underlying Branch Angle in Rapeseed (Brassica napus L.). Li, Hongge,Zhang, Liping,Hu, Jihong,Zhang, Fugui,Chen, Biyun,Xu, Kun,Gao, Guizhen,Li, Hao,Zhang, Tianyao,Wu, Xiaoming,Li, Hongge,Li, Zaiyun. 2017

[15]A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Li, Feng,Chen, Biyun,Xu, Kun,Gao, Guizhen,Yan, Guixin,Qiao, Jiangwei,Li, Jun,Li, Hao,Li, Lixia,Xiao, Xin,Zhang, Tianyao,Wu, Xiaoming,Li, Feng,Nishio, Takeshi.

[16]Disruption of OsARF19 is Critical for Floral Organ Development and Plant Architecture in Rice (Oryza sativa L.). Zhang, Shengzhong,Wu, Tao,Liu, Shijia,Liu, Xi,Jiang, Ling,Wan, Jianmin,Wan, Jianmin.

[17]LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Li, Peijin,Wang, Yonghong,Qian, Qian,Fu, Zhiming,Wang, Mei,Zeng, Dali,Li, Baohua,Wang, Xiujie,Li, Jiayang. 2007

[18]Mapping single-locus and epistatic quantitative trait loci for plant architectural traits in chrysanthemum. Zhang, Fei,Jiang, Jiafu,Chen, Sumei,Chen, Fadi,Fang, Weimin,Zhang, Fei.

[19]Short and erect rice (ser) mutant from Khao Dawk Mali 105' improves plant architecture. Yan, Wengui,Jia, Limeng,Jackson, Aaron,Pan, Xuhao,Hu, Biaolin,Zhang, Qijun,Jia, Limeng,Jia, Limeng,Pan, Xuhao,Yan, Zongbu,Deren, Christopher,Pan, Xuhao,Huang, Bihu.

[20]Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Wei, Liya,Gu, Lianfeng,Song, Xianwei,Cui, Xiekui,Lu, Zhike,Zhou, Ming,Wang, Lulu,Cao, Xiaofeng,Wei, Liya,Gu, Lianfeng,Song, Xianwei,Cui, Xiekui,Lu, Zhike,Zhou, Ming,Wang, Lulu,Cao, Xiaofeng,Wei, Liya,Cui, Xiekui,Hu, Fengyi,Zhai, Jixian,Meyers, Blake C.,Zhai, Jixian,Meyers, Blake C..

作者其他论文 更多>>