Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers

文献类型: 外文期刊

第一作者: Xiao, Xiaohu

作者: Xiao, Xiaohu;Tang, Chaorong;Fang, Yongjun;Zhou, Binhui;Qi, Jiyan;Zhang, Yi;Xiao, Xiaohu;Zhou, Binhui;Zhang, Yi;Yang, Meng

作者机构:

关键词: gene expression;gene family;Heveabrasiliensis;stress response;sucrose synthase

期刊名称:FEBS JOURNAL ( 影响因子:5.542; 五年影响因子:5.5 )

ISSN: 1742-464X

年卷期: 2014 年 281 卷 1 期

页码:

收录情况: SCI

摘要: Sucrose synthase (Sus, EC 2.4.1.13) is widely recognized as a key enzyme in sucrose metabolism in plants. However, nothing is known about this gene family in Heveabrasiliensis (para rubber tree). Here, we identified six Sus genes in H.brasiliensis that comprise the entire Sus family in this species. Analysis of the gene structure and phylogeny of the Sus genes demonstrates evolutionary conservation in the Sus families across Hevea and other plant species. The expression of Sus genes was investigated via Solexa sequencing and quantitative PCR in various tissues, at various phases of leaf development, and under abiotic stresses and ethylene treatment. The Sus genes exhibited distinct but partially redundant expression profiles. Each tissue has one abundant Sus isoform, with HbSus3, 4 and 5 being the predominant isoforms in latex (cytoplasm of rubber-producing laticifers), bark and root, respectively. HbSus1 and 6 were barely expressed in any tissue examined. In mature leaves (source), all HbSus genes were expressed at low levels, but HbSus3 and 4 were abundantly expressed in immature leaves (sink). Low temperature and drought treatments conspicuously induced HbSus5 expression in root and leaf, suggesting a role in stress responses. HbSus2 and 3 transcripts were decreased by ethylene treatment, consistent with the reduced sucrose-synthesizing activity of Sus enzymes in the latex in response to ethylene stimulation. Our results are beneficial to further determination of functions for the Sus genes in Hevea trees, especially roles in regulating latex regeneration.

分类号:

  • 相关文献

[1]Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Li, Ai-Li,Zhu, Yuan-Fang,Tan, Xiao-Mei,Wang, Xiang,Wei, Bo,Guo, Han-Zi,Zhang, Zeng-Lin,Chen, Xiao-Bo,Zhao, Guang-Yao,Kong, Xiu-Ying,Jia, Ji-Zeng,Mao, Long,Tan, Xiao-Mei.

[2]In silico genome-wide identification, phylogeny and expression analysis of the R2R3-MYB gene family in Medicago truncatula. Zheng Xing-wei,Yi Deng-xia,Shao Lin-hui,Li Cong. 2017

[3]Sucrose-metabolizing enzymes and their genes in the arils of two Dimocarpus longan cultivars. Shuai, L.,Li, J.,Niu, J. J.,Qian, P. H.,Liu, W. H.,Xue, X. Q.,Wu, Z. X.,Shuai, L.,Han, D. M.,Shuai, L.,Li, J.,Niu, J. J.,Qian, P. H.,Liu, W. H.,Xue, X. Q.,Wu, Z. X..

[4]Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction. Sun, Wei,Sun, Hong Wei,Yang, Shu Ke,Lu, Xing Bo,Xu, Xiao Hui,Chen, Hao,Wang, Juan,Sang, Ya Lin,Chen, Hao,Sang, Ya Lin.

[5]Genome-Wide Identification of the Maize Calcium-Dependent Protein Kinase Gene Family. Ma, Pengda,Liu, Jingying,Yang, Xiangdong,Ma, Rui.

[6]Genome-wide identification, expression profiling, and SSR marker development of the bZIP transcription factor family in Medicago truncatula. Zhang, Zhengshe,Liu, Wenxian,Liu, Zhipeng,Xie, Wengang,Wang, Yanrong,Qi, Xiao,Qi, Xiao.

[7]Comparative Transcriptional Profiling of Melatonin Synthesis and Catabolic Genes Indicates the Possible Role of Melatonin in Developmental and Stress Responses in Rice. Wei, Yunxie,Zeng, Hongqiu,He, Chaozu,Shi, Haitao,Hu, Wei,Chen, Lanzhen. 2016

[8]Gene expression profiles of arabidopsis under the stress of methyl viologen: a microarray analysis. Han, Hong-Juan,Peng, Ri-He,Zhu, Bo,Fu, Xiao-Yan,Zhao, Wei,Shi, Biao,Yao, Quan-Hong.

[9]Alterations of growth, antioxidant system and gene expression in Stylosanthes guianensis during Colletotrichum gloeosporioides infection. Wang, Hui,Jia, Yanxing,Luo, Lijuan,Chen, Zhijian,Liu, Guodao,Bai, Changjun,Qiu, Hong. 2017

[10]Gene expression profile of Arabidopsis under sodium bisulfite treatment by oligo-microarray analysis. Zhu, Bo,Han, Hong-Juan,Fu, Xiao-Yan,Zhao, Wei,Gao, Jian-Jie,Xue, Yong,Peng, Ri-He,Yao, Quan-Hong,You, Shuang-Hong.

[11]Comparative transcriptome profiling of potassium starvation responsiveness in two contrasting watermelon genotypes. Fan, Molin,Huang, Yuan,Zhong, Yaqin,Kong, Qiusheng,Xie, Junjun,Niu, Mengliang,Bie, Zhilong,Xu, Yong.

[12]Genome-Wide Analysis of the Sus Gene Family in Cotton. Changsong Zou,Cairui Lu,Haihong Shang,Xinrui Jing,Hailiang Cheng,Youping Zhang,Guoli Song. 2013

[13]Sucrose Metabolism and Changes of Relative Enzymes in Mangifera indica L. 'Irwin'. Wei, Chang-bin,Wu, Hong-xia,Ma, Wei-hong,Wang, Song-biao,Sun, Guang-ming.

[14]Isolation and Expression Analysis of Sucrose Synthase Gene (ScSuSy4) from Sugarcane. Gui, Yi-Yun,Qin, Cui-Xian,Wang, Miao,Huang, Dong-Liang,Chen, Zhong-Liang,Gui, Yi-Yun,Qin, Cui-Xian,Wang, Miao,Huang, Dong-Liang,Chen, Zhong-Liang,Gui, Yi-Yun,Qin, Cui-Xian,Wang, Miao,Huang, Dong-Liang,Chen, Zhong-Liang,Gui, Yi-Yun,Qin, Cui-Xian,Wang, Miao,Huang, Dong-Liang,Liao, Qing,Li, Yang-Rui. 2016

[15]Arbuscular mycorrhizal fungi induce sucrose cleavage for carbon supply of arbuscular mycorrhizas in citrus genotypes. Wu, Qiang-Sheng,Zou, Ying-Ning,Huang, Yong-Ming,Li, Yan,He, Xin-Hua,He, Xin-Hua. 2013

[16]Sugar Accumulation in 'Smooth Cayenne' Pineapple Fruits in Different Harvest Seasons. Zhang, X. M.,Dou, M. A.,Yao, Y. L.,Du, L. Q.,Sun, G. M.,Li, J. G.. 2011

[17]Dynamic analysis of sugar metabolism in different harvest seasons of pineapple (Ananas comosus L. (Merr.)). Sun, G. M.. 2011

[18]AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharification and lodging resistance by distinctively altering lignocellulose features in rice. Fan, Chunfen,Feng, Shengqiu,Huang, Jiangfeng,Wang, Yanting,Wu, Leiming,Li, Xukai,Wang, Lingqiang,Tu, Yuanyuan,Xia, Tao,Li, Jingyang,Peng, Liangcai,Fan, Chunfen,Feng, Shengqiu,Huang, Jiangfeng,Wang, Yanting,Wu, Leiming,Li, Xukai,Wang, Lingqiang,Tu, Yuanyuan,Xia, Tao,Peng, Liangcai,Fan, Chunfen,Feng, Shengqiu,Huang, Jiangfeng,Wang, Yanting,Wu, Leiming,Li, Xukai,Wang, Lingqiang,Tu, Yuanyuan,Li, Jingyang,Peng, Liangcai,Xia, Tao,Li, Jingyang,Cai, Xiwen. 2017

[19]Expression of sucrose metabolism and transport genes in cassava petiole abscission zones in response to water stress. Liao, W. B.,Li, Y. Y.,Lu, C.,Peng, M.. 2017

[20]Sugar Accumulation Difference between the Various Sections during Pineapple Development. Dou, M. A.,Yao, Y. L.,Du, L. Q.,Sun, G. M.,Zhang, X. M.,Li, J. G.. 2011

作者其他论文 更多>>