Microelectrolysis facilitated the plasmid-mediated horizontal transfer of antibiotic resistance genes at the microbial community level
文献类型: 外文期刊
第一作者: Liang, Sizhou
作者: Liang, Sizhou;Liang, Sizhou;Zhang, Weiguo;Liu, Lizhu;Gao, Yan;Semaha, Philip;Rocher, Dominique;Rocher, Dominique
作者机构:
关键词: Antibiotic resistance; Microelectrolysis; Wastewater; Plasmid; Horizontal gene transfer
期刊名称:JOURNAL OF ENVIRONMENTAL SCIENCES ( 影响因子:6.3; 五年影响因子:6.1 )
ISSN: 1001-0742
年卷期: 2025 年 157 卷
页码:
收录情况: SCI
摘要:
The escalating global dissemination of plasmid-mediated antibiotic resistance poses a formidable threat to global health. Conjugation stands as a pivotal mechanism for horizontal gene transfer among bacterial populations, facilitating the spread of antibiotic resistance genes (ARGs). Microelectrolysis has garnered attention as an efficacious strategy for mitigating antibiotic concentrations in wastewater, yet its potential impact on ARG horizontal transfer remain largely unexplored. This comprehensive investigation unveils that microelectrolysis not only influences but significantly accelerates the conjugative transfer of ARG-harboring plasmids. Remarkably, this phenomenon is corroborated at the microbial community scale, underscoring its ecological relevance. Alarmingly, the study highlights the vulnerability of intestinal microorganisms to acquire antibiotic resistance under electrolytic stimulation, posing heightened risks to both animal and human health. Delving deeper, the study elucidates the underlying mechanisms responsible for this enhanced conjugative transfer. It reveals that microelectrolysis augments the abundance of mating-competent cells, triggers the generation of reactive oxygen species, inflicts modest membrane damage, and upregulates the expression of genes critical for conjugation. These findings collectively contribute to a more profound comprehension of the environmental dissemination dynamics and associated public health implications of ARGs in the context of wastewater treatment employing microelectrolytic technologies.
(c) 2025 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
分类号:
- 相关文献
作者其他论文 更多>>
-
Phosphogypsum and biosynthesized selenium nanoparticles synergistically mitigate cadmium contamination and promote maize growth in wastewater-irrigated alkaline soil
作者:Alharbi, Khadiga;Gao, Yan;Hafez, Emad M.;Gao, Yan;Hafez, Emad M.;Elatafi, Essam;Omara, Alaa El-Dein;Gadow, Samir I.;Osman, Hany S.;Alshaal, Tarek;Alshaal, Tarek;Rashwan, Emadelden;Hafez, Emad M.
关键词:Alkaline soil; Antioxidant enzymes activity; Cadmium stress; Nutritional content; Soil chemical properties; Oxidative stress
-
Multi-omics analysis of Trichoderma reesei mutant with high glucanase activity
作者:Wang, Na;Lin, Qing;Wang, Zihan;Shi, Honglin;Gao, Yan;Zen, Jun;Lou, Kai;Huo, Xiangdong;Wang, Na;Lin, Qing;Wang, Zihan;Shi, Honglin;Gao, Yan;Zen, Jun;Lou, Kai;Huo, Xiangdong;Wang, Na
关键词:
Trichoderma reesei ; beta-glucanase; Metabolomics; Transcriptomics -
Control locations confuse evaluation of passivation effects of iron-based biochar and selenium applications on wheat grain cadmium accumulation in a Cd-contaminated weakly alkaline soil
作者:Jing, Feng;Li, Hongbo;Zhou, Dongmei;Gao, Yan;Fan, Guangping;Zhang, Qingya;Gao, Xuezhen
关键词:field experiment; foliar Se application; Se accumulation; soil Cd heterogeneity; toxic metal; wheat Cd
-
Ball-Milling-Modified Biochar with Additives Enhances Soil Cd Passivation, Increases Plant Growth and Restrains Cd Uptake by Chinese Cabbage
作者:Lu, Xin;Sun, Jiawan;Pan, Guojun;Qi, Weicong;Zhang, Zhenhua;Gao, Yan;Lu, Xin;Gao, Yan;Zhang, Zhenhua;Zhang, Zhenhua;Xing, Jincheng
关键词:heavy metals; soil pollution; modification; adsorption; safe production
-
Mn-doped cerium dioxide nanozyme mediates ROS homeostasis and hormone metabolic network to promote wheat germination under low-temperature conditions
作者:Wu, Yixin;Xu, Shen;Sun, Mengqing;Liu, Lizhu;Shi, Gaoling;Gao, Yan;Wu, Yixin;Xu, Shen;Sun, Mengqing;Liu, Lizhu;Shi, Gaoling;Gao, Yan;Wei, Hui;Muhammad, Faheem;Muhammad, Faheem
关键词:Wheat; Nanozyme; Seed priming; Cold tolerance; Hormone metabolic
-
The role of symbiotic nitrogen-fixing bacteria, Rhizobium and Sinorhizobium, as "bridges" in the rhizosphere of legumes after fomesafen application
作者:Chen, Wei;Li, Yuntao;Shi, Gaoling;Fan, Guangping;Tong, Fei;Liu, Lizhu;Li, Jiangye;Gao, Yan;Chen, Wei;Li, Yuntao;Shi, Gaoling;Fan, Guangping;Tong, Fei;Liu, Lizhu;Li, Jiangye;Gao, Yan;Chen, Wei;Li, Yuntao;Fan, Guangping;Tong, Fei;Gao, Yan;Shi, Gaoling;Gao, Yan
关键词:Legumes; Nitrogen-fixing microbes; Rhizospheric network; Symbiotic nitrogen-fixing bacteria; Root characteristics
-
Insights into the impact of different phytoremediation strategies on antibiotic resistance genes at the metagenomic level in real scenarios
作者:Zhang, Wei-Guo;Liao, Yonghui;Zhang, Wei-Guo;Liang, Sizhou;Gao, Yan;Ran, Guangcan;Ji, Shenyang;Lei, Zhongfang
关键词:Antibiotic resistance genes; Phytoremediation; Metagenome; Wastewater