Involvement of rootstocks and their hydraulic conductance in the drought resistance of grafted rubber trees

文献类型: 外文期刊

第一作者: An Feng

作者: An Feng;Gong Lidan;Wang Zhenhui;Lin Weifu;An Feng;Gong Lidan;Wang Zhenhui;Lin Weifu;An Feng;Kong Lingxue

作者机构:

关键词: Rubber tree (Hevea brasiliensis);rootstock;hydraulic conductance;drought resistance;high-pressure flow meter

期刊名称:AFRICAN JOURNAL OF BIOTECHNOLOGY ( 影响因子:0.573; 五年影响因子:0.794 )

ISSN: 1684-5315

年卷期: 2011 年 10 卷 51 期

页码:

收录情况: SCI

摘要: Improving drought resistance of rubber trees has become a pressing issue with the extension of rubber plantations and the prevalence of seasonal drought. Root system is vital to water and nutrients uptake of all plants, therefore, rootstocks could play decisive roles in drought resistance of grafted rubber trees on a specific scion clone. To investigate the responses of different clone rootstocks and their grafted trees to water stress and find applicable methods for selecting drought resistant rootstocks, seven related parameters and root hydraulic properties of both seeds originated and grafted saplings of PB86, PR107, RRIM600 and GT1 were measured to assess their drought resistance. It was shown that the rootstock drought resistance and root hydraulic conductance may improve the drought resistance of the grafted rubber trees. Among the four clone rootstocks, GT1, which demonstrated more resistant to drought and higher root hydraulic conductance, was comparatively resistant to drought both for the seed propagation seedlings and grafted saplings. In addition, studies on the grafted saplings with different root hydraulic conductance further validated the possibility of selecting drought resistant rootstocks on the basis of rootstock hydraulic conductance using a high-pressure flow meter.

分类号:

  • 相关文献

[1]Variation of phloem turgor pressure in Hevea brasiliensis: An implication for latex yield and tapping system optimization. An, Feng,Lin, Weifu,An, Feng,Kong, Lingxue,Cahill, David,Rookes, James.

[2]Development, characterization, and cross-species/genera transferability of SSR markers for rubber tree (Hevea brasiliensis). Yu, Fei,Feng, Su-Ping,Wang, Jing-Yi,Li, Wei-Guo,Yu, Fei,Wang, Jing-Yi,Feng, Su-Ping,Wu, Yao-Ting,Wang, Bao-Hua.

[3]Rootstocks influence fruit oleocellosis in 'Hamlin' sweet orange (Citrus sinensis L. Osbeck). Zheng, Yongqiang,Deng, Lie,He, Shaolan,Yi, Shilai,Zheng, Yongqiang,Zhou, Zhiqin,Zhao, Xuyang,Wang, Liang.

[4]Bottle gourd rootstock-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress. Yang, Yanjuan,Yu, Li,Wang, Liping,Guo, Shirong,Yang, Yanjuan,Yu, Li.

[5]Progress on Peach Breeding in China. Ma, R.,Yu, M.,Xu, J.,Zhang, Y.,Shen, Z..

[6]Genome-wide identification and comparative analysis of grafting-responsive mRNA in watermelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing. Liu, Na,Yang, Jinghua,Fu, Xinxing,Zhang, Li,Guy, Kateta Malangisha,Hu, Zhongyuan,Zhang, Mingfang,Liu, Na,Tang, Kai,Guo, Shaogui,Xu, Yong.

[7]Sweet cherry rootstock breeding program at Beijing Institute of Forestry and Pomology. Zhang, Xiaoming,Zhang, Kaichun,Yan, Guohua,Wang, Jing,Zhou, Yu.

[8]Structural, physiological and biochemical responses of Pyrus calleryana offspring to salt stress. Li, X.,Lin, J.,Chang, Y.,Zhang, Z.,Li, X.,Wang, Z.,Wang, Q.,Chang, Y.,Dong, W..

[9]Gene expression profiling of rootstock '140Ru' and Vitis vinifera L. cv. 'Crimson Seedless' grape roots infected with grape phylloxera. Du, Yuan-Peng,Wang, Feng-Pan,Zhang, Shi-Zhong,Zhai, Heng,Jiang, En-Shun. 2014

[10]Identification of grapevine rootstock cultivars using expressed sequence tag-simple sequence repeats. Fan, X. C.,Liu, C. H.,Chu, J. Q.,Sun, X.,Fang, J. G.,Chu, J. Q.,Sun, X.,Fang, J. G.. 2014

[11]Genetic diversity of Poncirus and phylogenetic relationships with its relatives revealed by SSR and SNP/InDel markers. Zhu, Shiping,Wang, Fusheng,Shen, Wanxia,Jiang, Dong,Hong, Qibin,Zhao, Xiaochun,Zhu, Shiping,Jiang, Dong,Hong, Qibin,Zhao, Xiaochun.

[12]Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Liu, Xiulin,Chang, Xiaoping,Jing, Ruilian,Liu, Xiulin,Li, Runzhi.

[13]Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Hao, Zhuanfang,Xie, Chuanxiao,Li, Xinhai,Zhang, Shihuang,Lu, Yanli,Crossa, Jose,Araus, Jose-Luis,Taba, Suketoshi,Xu, Yunbi,Lu, Yanli,Gao, Shibin,Pan, Guangtang,Rong, Tingzhao,Vivek, Bindiganavile S.,Magorokosho, Cosmos,Mugo, Stephen,Makumbi, Dan,Xu, Yunbi.

[14]A proposed selection criterion for drought resistance across multiple environments in maize. Hao, Zhuan-Fang,Li, Xin-Hai,Su, Zhi-Jun,Xie, Chuan-Xiao,Li, Ming-Shun,Weng, Jian-Feng,Zhang, De-Gui,Li, Liang,Zhang, Shi-Huang,Liang, Xiao-Ling,Li, Liang.

[15]The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Yu, Yanwen,Gu, Juntao,Wang, Fengru,Dong, Jingao,Yu, Yanwen,Yang, Dexin,Zhou, Shirong,Huang, Rongfeng,Huang, Rongfeng.

[16]Identification of two functional markers associated with drought resistance in maize. Liu, Sisi,Hao, Zhuanfang,Weng, Jianfeng,Li, Mingshun,Zhang, Degui,Zhang, Shihuang,Li, Xinhai,Liu, Sisi,Pan, Guangtang.

[17]Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Lu, Yanli,Xu, Jie,Yuan, Zhimin,Lan, Hai,Rong, Tingzhao,Lu, Yanli,Xu, Yunbi,Xu, Yunbi,Shah, Trushar.

[18]Development and identification of a introgression line with strong drought resistance at seedling stage derived from Oryza sativa L. mating with Oryza rufipogon Griff. Zhang, Fantao,Cui, Fenglei,Zhang, Liangxing,Wen, Xiufang,Luo, Xiangdong,Zhou, Yi,Zhang, June,Xie, Jiankun,Li, Xia,Wan, Yong.

[19]Study On The Relationship Between The Winter Wheat Thermal Infrared Image Characteristics And Physiological Indicators. Chen Zi-long,Wang Cheng,Zhu Da-zhou. 2014

[20]Evaluation of drought resistance in Iris germanica L. based on subordination function and principal component analysis. Bo, Wei,Xing, Guoming,Bo, Wei,Fu, Baochun,Qin, Guojie,Wang, Yuguo. 2017

作者其他论文 更多>>