Transgressive segregation, heritability, and number of genes controlling durable resistance to stripe rust in one Chinese and two Italian wheat cultivars

文献类型: 外文期刊

第一作者: Zhang, ZJ

作者: Zhang, ZJ;Yang, GH;Li, GH;Jin, SL;Yang, XB

作者机构:

关键词: quantitative genetics;slow rusting;yellow rust

期刊名称:PHYTOPATHOLOGY ( 影响因子:4.025; 五年影响因子:4.394 )

ISSN: 0031-949X

年卷期: 2001 年 91 卷 7 期

页码:

收录情况: SCI

摘要: Wheat (Triticum aestivum) cvs. Libellula (LB), San Pastore (SP), and Xian Nong 4 (XN4) possess durable resistance to stripe rust, caused by Puccinia striiformis f. sp. tritici, and cv. Ming Xian 169 (MX169) is highly susceptible to the rust. Inheritance of stripe rust resistance was studied by crossing the four cultivars and evaluating the resistance of parental, F-1, F-2, backcross, and F-3 plants in the fields. Transgressive segregation for resistance was observed in the resistant by resistant crosses of LB x XN4 and XN4 x SP, but not in cross LB x SP. These results indicate that (i) the resistance genes in XN4 are different from those in LB and SP, and (ii) LB and SP share common resistance genes. The number of genes segregating for the resistance was estimated by quantitative methods from the data of F-2, backcross, and F-3 populations, LB and XN4 appear to have two to three resistance genes, and SP appears to have two to four resistance genes when crossed with MX169. The resistance gene number in resistant by resistant cross LB x XN4 was four to five, approximately equal to the sum of the genes in LB and XN4. Similarly, the resistance gene number in cross XN4 x SP was approximately equal to the sum of the genes in XN4 and SP. Broad-sense heritability was high in ail crosses except LB x SP. Compared with the three MX169-involved crosses, narrow-sense heritability was higher in LB x MX169 and SP x MX169 crosses than in the XN4 x MX169 cross. The LB x XN4 and XN4 x SP crosses showed moderate narrow-sense heritability.

分类号:

  • 相关文献

[1]Stripe rust resistance gene Yr18 and its suppressor gene in Chinese wheat landraces. Zhu, Huazhong,Li, Shizhao,Xia, Xianchun,He, Zhonghu,Rosewarne, Garry M.,Zhang, Zhengyu,He, Zhonghu.

[2]Analysis of spectral difference between the foreside and backside of leaves in yellow rust disease detection for winter wheat. Yuan, Lin,Zhang, Jing-Cheng,Wang, Ke,Wang, Ji-Hua,Yuan, Lin,Zhang, Jing-Cheng,Wang, Ji-Hua,Zhao, Jin-Ling,Loraamm, Rebecca-W.,Huang, Wen-Jiang.

[3]Vertical features of yellow rust infestation on winter wheat using hyperspectral imaging measurements. Zhao, Jinling,Zhang, Dongyan,Huang, Linsheng,Zhang, Qing,Liu, Wenjing,Yang, Hao. 2016

[4]CONTINUOUS WAVELET ANALYSIS BASED SPECTRAL FEATURE SELECTION FOR WINTER WHEAT YELLOW RUST DETECTION. Zhang Jingcheng,Wang Jihua,Zhang Jingcheng,Luo Juhua,Huang Wenjiang,Wang Jihua,Luo Juhua. 2011

[5]Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat. Zhang, Jingcheng,Yuan, Lin,Yang, Guijun,Wang, Jihua,Zhang, Jingcheng,Yuan, Lin,Yang, Guijun,Wang, Jihua,Zhang, Jingcheng,Yuan, Lin,Yang, Guijun,Wang, Jihua,Zhang, Jingcheng,Pu, Ruiliang,Loraamm, Rebecca W.. 2014

[6]Differentiation of Yellow Rust and Powdery Mildew in Winter Wheat and Retrieving of Disease Severity Based on Leaf Level Spectral Analysis. Yuan Lin,Zhang Jing-cheng,Zhao Jin-ling,Wang Ji-hua,Yuan Lin,Zhang Jing-cheng,Wang Ji-hua,Huang Wen-jiang. 2013

[7]SELECTION OF SPECTRAL CHANNELS FOR SATELLITE SENSORS IN MONITORING YELLOW RUST DISEASE OF WINTER WHEAT. Yuan, Lin,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Wang, Jihua. 2013

[8]Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Zhang, Jingcheng,Huang, Wenjiang,Yuan, Lin,Luo, Juhua,Wang, Jihua,Zhang, Jingcheng,Pu, Ruiliang,Zhang, Jingcheng,Yuan, Lin,Wang, Jihua,Huang, Wenjiang. 2012

[9]Discrimination of yellow rust and powdery mildew in wheat at leaf level using spectral signatures. Yuan, Lin,Zhang, Jingcheng,Zhao, Jinling,Du, Shizhou,Huang, Wenjiang,Wang, Jihua. 2012

[10]Isolation of twelve microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia striiformis f.sp tritici. Duan, X,Giraud, T,Vautrin, D,de Vallavielle-Pope, C,Solignac, M. 2002

[11]QTL Mapping for Adult-Plant Resistance to Stripe Rust in a Common Wheat RIL Population Derived from Chuanmai 32/Chuanyu 12. Xia Xian-chun,He Zhong-hu,Wu Ling,Yang En-nian,Li Shi-zhao,Wu Ling,Zheng You-liang,He Zhong-hu,Zhang Zheng-yu,Zheng You-liang,Liu Yong-jian. 2012

[12]Molecular mapping of a novel yellow rust resistance gene of wheat using microsatellite markers. Ma, JX,Zhou, RH,Dong, YC,Wang, XM,Jia, JZ. 1999

[13]Seedling and slow rusting resistance to stripe rust in Chinese common wheats. Xia, X. C.,Zhou, X. C.,Niu, Y. C.,He, Z. H.,Zhang, Y.,Li, G. Q.,Wan, A. M.,Wang, D. S.,Chen, X. M.,Lu, Q. L.,Singh, R. P.. 2006

[14]New Optimized Spectral Indices for Identifying and Monitoring Winter Wheat Diseases. Huang, Wenjiang,Guan, Qingsong,Guan, Qingsong,Zhao, Jinling,Liang, Dong,Huang, Linsheng,Zhang, Dongyan,Luo, Juhua,Zhang, Jingcheng. 2014

[15]Comparison of Methods for Forecasting Yellow Rust in Winter Wheat at Regional Scale. Nie, Chenwei,Yuan, Lin,Yang, Xiaodong,Wei, Liguang,Yang, Guijun,Zhang, Jingcheng. 2015

[16]Comparative Research on Estimating the Severity of Yellow Rust in Winter Wheat. Wang Jing,Jing Yuan-shu,Zhao Juan,Wang Jing,Huang Wen-jiang,Zhang Qing,Wang Li,Zhang Jing-cheng. 2015

[17]Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Yuan, Lin,Nie, Chenwei,Wang, Jihua,Zhang, Jingcheng,Yuan, Lin,Nie, Chenwei,Wang, Jihua,Zhang, Jingcheng,Huang, Yanbo,Loraamm, Rebecca W.. 2014

[18]Control and inheritance of resistance to yellow rust in Triticum aestivum-Lophopyrum elongatum chromosome substitution lines. Ma, JX,Zhou, RH,Dong, YS,Jia, JZ. 2000

[19]Comparative virulence phenotypes and molecular genotypes of Puccinia striiformis f. sp tritici, the wheat stripe rust pathogen in China and the United States. Zhan, Gangming,Chen, Xianming,Wang, Meinan,Wan, Anmin,Cheng, Peng,Zhan, Gangming,Kang, Zhensheng,Huang, Lili,Wang, Meinan,Chen, Xianming,Chen, Xianming,Cao, Shiqin,Jin, Shelin. 2012

[20]Molecular mapping of a recessive stripe rust resistance gene yrMY37 in Chinese wheat cultivar Mianmai 37. Ren, Yong,Xia, Xianchun,He, Zhonghu,Ren, Yong,Li, Shengrong,Zhou, Qiang,He, Yuanjiang,Wei, Yuming,Zheng, Youliang,He, Zhonghu.

作者其他论文 更多>>