Relationship Between Ralstonia solanacearum Diversity and Severity of Bacterial Wilt Disease in Tomato Fields in China

文献类型: 外文期刊

第一作者: Zheng, Xue-fang

作者: Zheng, Xue-fang;Lin, Nai-quan;Zheng, Xue-fang;Zhu, Yu-jing;Liu, Bo;Zhou, You;Che, Jian-mei

作者机构:

关键词: bacterial wilt disease;China;pathogenic differentiation;Ralstonia solanacearum;tomato

期刊名称:JOURNAL OF PHYTOPATHOLOGY ( 影响因子:1.789; 五年影响因子:1.574 )

ISSN: 0931-1785

年卷期: 2014 年 162 卷 9 期

页码:

收录情况: SCI

摘要: A field survey was conducted to determine the relationship between Ralstonia solanacearum diversity and severity of bacterial wilt disease in tomato plants grown in plastic greenhouses. Both vegetative and reproductive stages of the plants were surveyed, and the symptoms were empirically categorized into five scales: 0 (asymptomatic): 1st, 2nd, 3rd and 4th. The bacterial wilt pathogen was isolated from infected plants at each disease scale; pathogenic characteristics and population densities of the bacterial strains were assessed. Two hundred and eighty-two isolates were identified as R. solanacearum, which were divided into three pathogenic types, virulent, avirulent and interim, using the attenuation index (AI) method and a plant inoculation bioassay. Ralstonia solanacearum was detected in all asymptomatic and symptomatic tomato plants, with population numbers, ranging from 10.5 to 86.7 x 105 cfu/g. However, asymptomatic plants harboured only avirulent or interim R. solanacearum, whereas tomato plants displaying 1st or 2nd disease degree contained interim and virulent strains. Additionally, 3rd and 4th degree plants harboured only virulent strains. The disease was more severe in vegetative-stage plants (disease severity index (DSI) 0.20) with higher total numbers of interim and virulent R. solanacearum strains than those in reproductive-stage plants (DSI 0.12). Three pathotypes of R. solanacearum coexisted in a competitive growth system in the tomato field, and their distribution closely correlated with the severity of tomato bacterial wilt.

分类号:

  • 相关文献

[1]Seasonal variation in the biocontrol efficiency of bacterial wilt is driven by temperature-mediated changes in bacterial competitive interactions. Huang, Jianfeng,Yang, Tianjie,Jousset, Alexandre,Xu, Yangchun,Shen, Qirong,Huang, Jianfeng,Yang, Tianjie,Jousset, Alexandre,Friman, Ville-Petri.

[2]Rapid differentiation of Ralstonia solanacearum avirulent and virulent strains by cell fractioning of an isolate using high performance liquid chromatography. Zheng, Xuefang,Lin, Naiquan,Zheng, Xuefang,Zhu, Yujing,Liu, Bo,Yu, Qian.

[3]Invasive properties of Ralstonia solanacearum virulent and avirulent strains in tomato roots. Zheng, Xuefang,Zhu, Yujing,Liu, Bo,Lin, Naiquan,Zheng, Desen. 2017

[4]Biofilm formation ability of Paenibacillus polymyxa and Paenibacillus macerans and their inhibitory effect against tomato bacterial wilt. Wang, Yanli,Sun, Guochang,Li, Bin,Tang, Qiaomei,Su, Ting,Chen, Xiaoling,Zhu, Bo,Xie, Guanlin,Yu, Rongrong. 2011

[5]Infectivity of Tomato Leaf Curl Hainan Virus in Tomato and Tobacco in China. Zhang, Hui,Tian, Shoubo,Wu, Xuexia,Liu, Longzhou,Liu, Na,Zhu, Weimin. 2012

[6]Genetic differentiation in seven geographic populations of the fleshy shrimp Penaeus (Fenneropenaeus) chinensis based on microsatellite DNA. Meng, Xian Hong,Wang, Qing Yin,Liu, Ping,Kong, Jie,Meng, Xian Hong,Jang, In Kwon.

[7]Genetic structure and phylogenetic relationships of Ralstonia solanacearum strains from diverse origins in Guangdong Province, China. She, Xiaoman,Li, Huaping,She, Xiaoman,He, Zifu. 2018

[8]Isolation and analysis of differentially expressed genes from peanut in response to challenge with Ralstonia solanacearum. Ding, Yu Fei,Wang, Chuan Tang,Tang, Yue Yi,Wang, Xiu Zhen,Wu, Qi,Yu, Hong Tao,Zhang, Jian Cheng,Cui, Feng Gao,Song, Guo Sheng,Yu, Shan Lin,Hu, Dong Qing,Gao, Hua Yuan. 2012

[9]Inhibitory activity of Paenibacillus macerans and Paenibacillus polymyxa against Ralstonia solanacearum. Li, Bin,Su, Ting,Tao, Zhongyun,Algam, Soad A. E.,Xie, Guanlin,Yu, Rongrong,Wu, Zhiyi,Wang, Yanli,Sun, Guochang. 2010

[10]Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling. Feng, Dong Xin,Tasset, Celine,Hanemian, Mathieu,Barlet, Xavier,Tremousaygue, Dominique,Deslandes, Laurent,Marco, Yves,Feng, Dong Xin,Tasset, Celine,Hanemian, Mathieu,Barlet, Xavier,Tremousaygue, Dominique,Deslandes, Laurent,Marco, Yves,Feng, Dong Xin,Hu, Jian. 2012

[11]Phenotypic evaluation of the Chinese mini-mini core collection of peanut (Arachis hypogaea L.) and assessment for resistance to bacterial wilt disease caused by Ralstonia solanacearum. Jiang, Huifang,Ren, Xiaoping,Chen, Yuning,Huang, Li,Zhou, Xiaojing,Huang, Jiaquan,Liao, Boshou,Froenicke, Lutz,Yu, Jiujiang,Guo, Baozhu. 2013

[12]Identification and Genetic Characterization of Ralstonia solanacearum Species Complex Isolates from Cucurbita maxima in China. She, Xiaoman,Yu, Lin,Lan, Guobing,Tang, Yafei,He, Zifu,She, Xiaoman,He, Zifu. 2017

[13]Flame soil disinfestation: A novel, promising, non-chemical method to control soilborne nematodes, fungal and bacterial pathogens in China. Wang, Qiuxia,Yan, Dongdong,Li, Yuan,Ouyang, Canbin,Guo, Meixia,Cao, Aocheng,Mao, Liangang,Wang, Qiuxia,Yan, Dongdong,Li, Yuan,Ouyang, Canbin,Guo, Meixia,Cao, Aocheng.

[14]TssB is essential for virulence and required for Type VI secretion system in Ralstonia solanacearum. Xu, Jingsheng,Xu, Jin,Zhang, Hao,He, Liyuan,Feng, Jie.

[15]Cooperative Reinforcement of Ionic Liquid and Reactive Solvent on Enzymatic Synthesis of Caffeic Acid Phenethyl Ester as an In Vitro Inhibitor of Plant Pathogenic Bacteria. Xu, Yan,Sheng, Sheng,Liu, Xi,Wang, Chao,Xiao, Wei,Wang, Jun,Wu, Fu-An,Xu, Yan,Sheng, Sheng,Wang, Jun,Wu, Fu-An.

[16]Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance. Zhang, Chengsheng,Tian, Xueying,Lin, Yong,Xu, Qian,Chen, Zhihou,Lin, Wei.

[17]Extract of Syringa oblata: A new biocontrol agent against tobacco bacterial wilt caused by Ralstonia solanacearum. Bai, Wanming,Kong, Fanyu,Zhang, Chengsheng,Bai, Wanming,Lin, Yong.

[18]Genomic Analysis of Phylotype I Strain EP1 Reveals Substantial Divergence from Other Strains in the Ralstonia solanacearum Species Complex. Li, Peng,Wang, Dechen,Yan, Jinli,Zhou, Jianuan,Deng, Yinyue,Jiang, Zide,Zhang, Lianhui,Deng, Yinyue,Cao, Bihao,He, Zifu,Zhang, Lianhui. 2016

[19]Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum. Chen, Yuning,Ren, Xiaoping,Zhou, Xiaojing,Huang, Li,Yan, Liying,Lei, Yong,Liao, Boshou,Huang, Shunmou,Wei, Wenhui,Jiang, Huifang,Huang, Jinyong. 2014

[20]Development of a specific molecular tool for the detection of epidemiologically active mulberry causing-disease strains of Ralstonia solanacearum phylotype I (historically race 5-biovar 5) in China. Xu, J.,Xu, J. S.,Zhang, H.,Chen, K. Y.,Tian, Q.,Zhang, L. Q.,Liu, L.,He, L. Y.,Feng, J.,Prior, P.,Pan, Z. C..

作者其他论文 更多>>