08SG2/OsBAK1 regulates grain size and number, and functions differently in Indica and Japonica backgrounds in rice

文献类型: 外文期刊

第一作者: Yuan, Hua

作者: Yuan, Hua;Fan, Shijun;Huang, Juan;Zhan, Shijie;Wang, Shifu;Gao, Peng;Chen, Weilan;Tu, Bin;Ma, Bingtian;Wang, Yuping;Qin, Peng;Li, Shigui;Yuan, Hua;Fan, Shijun;Zhan, Shijie;Wang, Shifu;Gao, Peng;Chen, Weilan;Tu, Bin;Ma, Bingtian;Wang, Yuping;Qin, Peng;Li, Shigui;Huang, Juan

作者机构:

关键词: Rice;08SG2/OsBAK1;Grain size;Grain number;BR;Cell proliferation

期刊名称:RICE ( 影响因子:4.8; 五年影响因子:5.4 )

ISSN: 1939-8425

年卷期: 2017 年 10 卷

页码:

收录情况: SCI

摘要: Background: Both grain size and grain number are significant for rice yield. In the past decade, a number of genes related to grain size and grain number have been documented, however, the regulatory mechanisms underlying them remains ambiguous. Results: We identified a rice small grain (sg2) mutant in an EMS mutant library generated from an indica variety, Shuhui498. Using the MutMap gene mapping strategy, we identified two linkage regions on chromosome 7 and 8, respectively, consistent with the segregation ratios in the F-2 population. We focused on the linkage region on chromosome 8, and named this locus as 08sg2. One of three SNPs identified in the linkage region was located in an exon of OsBAK1, leading to a nonsynonymous mutation in the kinase domain. The plant harboring the mutant version 08sg2 locus exhibited a decreased grain size, grain number and plant height. Cytological analysis indicated that 08SG2 regulated spikelet hull development by affecting cell proliferation. The grain size and number of knockout mutants of OsBAK1 in the japonica background were significantly decreased, but less so than in 08sg2, supporting the idea that the SNP in OsBAK1 was responsible for the 08sg2 phenotype, but that 08SG2/OsBAK1 function differently in indica and japonica backgrounds. 08sg2 was insensitive to 24 epiBL, and the expression of BR-related genes was obviously altered in 08sg2. The proportionally decreased grain length when 08sg2 and GS3 were combined indicate that 08SG2 and GS3 regulate grain length independently. Conclusions: Our work shows that 08SG2/OsBAK1 is important for rice yield in both indica and japonica backgrounds, by regulating grain size and grain number, and the function of 08SG2/OsBAK1 is obviously affected by genetic background. The amino acid substituted in 08sg2 is highly conserved among different species, supporting the idea that it is important for the molecular function of 08SG2/OsBAK1. Together, our work is helpful for fully understanding the function of 08SG2/OsBAK1.

分类号:

  • 相关文献

[1]SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. Feng, Zhiming,Wang, Chunming,Zhang, Long,Zhang, Shengzhong,Zhang, Huan,Yang, Chunyan,Hu, Jinlong,You, Xiaoman,Liu, Xi,Yang, Xiaoming,Jiang, Ling,Wan, Jianmin,Wu, Chuanyin,Chen, Jun,Guo, Xiuping,Zhang, Xin,Wu, Fuqing,Wan, Jianmin,Roh, Jeehee,Kim, Seong-Ki,Terzaghi, William.

[2]GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Zhou, Yong,Tao, Yajun,Miao, Jun,Liu, Jun,Liu, Yanhua,Yi, Chuandeng,Yang, Zefeng,Gong, Zhiyun,Liang, Guohua,Zhu, Jinyan. 2017

[3]SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Duan, Penggen,Xu, Ran,Zhang, Baolan,Li, Yunhai,Duan, Penggen,Rao, Yuchun,Zeng, Dali,Yang, Yaolong,Dong, Guojun,Qian, Qian,Rao, Yuchun. 2014

[4]Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice. Duan, Penggen,Xu, Jinsong,Zhang, Baolan,Zhang, Guozheng,Huang, Ke,Huang, Luojiang,Xu, Ran,Li, Yunhai,Zeng, Dali,Qian, Qian,Geng, Mufan,Ge, Song,Zhang, Guozheng,Huang, Ke,Huang, Luojiang. 2017

[5]OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Liu, Shuying,Hua, Lei,Dong, Sujun,Jiang, Jun'e,Zhang, Fang,Fang, Xiaohua,Chen, Fan,Chen, Hongqi,Zhu, Xudong,Li, Yunhai.

[6]Mutation of a U-box E3 ubiquitin ligase results in brassinosteroid insensitivity in rice. Tang, Yangfan,Xie, Kailong,Li, Wenbo,Ye, Shumei,Gao, Fengyan,Zou, Ting,Li, Xuemei,Deng, Qiming,Wang, Shiquan,Zheng, Aiping,Zhu, Jun,Liu, Huainian,Wang, Lingxia,Li, Ping,Li, Shuangcheng,Ren, Yun,Tang, Yangfan,Xie, Kailong,Li, Wenbo,Ye, Shumei,Gao, Fengyan,Zou, Ting,Li, Xuemei,Deng, Qiming,Wang, Shiquan,Zheng, Aiping,Zhu, Jun,Liu, Huainian,Wang, Lingxia,Li, Ping,Li, Shuangcheng,Li, Ping.

[7]Novel rice mutants overexpressing the brassinosteroid catabolic gene CYP734A4. Qian, Wenjing,Wu, Chao,Fu, Yaping,Hu, Guocheng,Liu, Wenzhen,Qian, Wenjing,He, Zhengquan,Wu, Chao.

[8]Functional Marker Development and Effect Analysis of Grain Size Gene GW2 in Extreme Grain Size Germplasm in Rice. Zhang Ya-dong,Zheng Jia,Liang Yan-li,Zhao Chun-fang,Chen Tao,Zhao Qing-yong,Zhu Zhen,Zhou Li-hui,Yao Shu,Zhao Ling,Yu Xing,Wang Cai-lin. 2015

[9]A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice. Hu, Jiang,Wang, Yuexing,Fang, Yunxia,Xu, Jie,Yu, Haiping,Shi, Zhenyuan,Pan, Jiangjie,Zhang, Dong,Zhu, Li,Dong, Guojun,Guo, Longbiao,Zeng, Dali,Zhang, Guangheng,Xie, Lihong,Qian, Qian,Zeng, Longjun,Kang, Shujing,Xiong, Guosheng,Qian, Qian,Li, Jiayang,Li, Jiayang. 2015

[10]Identification of QTLs for grain size and characterization of the beneficial alleles of grain size genes in large grain rice variety BL129. Gao Xuan,Luo Yue-hua,Zhu Xu-dong,Gao Xuan,Fang Na,Duan Peng-gen,Wu Ying-bao,Li Yun-hai.

[11]Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice. Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Yu, Si-Bin,Zhang, Hong-Wei,Yu, Si-Bin. 2016

[12]Haplotypes of qGL3 and their roles in grain size regulation with GS3 alleles in rice. Zhang, Y. D.,Zhu, Z.,Zhao, Q. Y.,Chen, T.,Yao, S.,Zhou, L. H.,Zhao, L.,Zhao, C. F.,Wang, C. L.,Zhang, Y. D.,Zhao, Q. Y.,Wang, C. L.. 2016

[13]Fine mapping a domestication-related QTL for spike-related traits in a synthetic wheat. Wang, Jin,Liao, Xiangzheng,Li, Yulian,Zhou, Ronghua,Gao, Lifeng,Jia, Jizeng,Wang, Jin,Yang, Xueju.

[14]Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.). Zhang, Dongling,Hao, Chenyang,Wang, Lanfen,Zhang, Xueyong.

[15]Spatial heterogeneity of plant species on the windward slope of active sand dunes in a semi-arid region of China. Jiang, DeMing,Miao, ChunPing,Li, XueHua,Alamusa,Zhou, QuanLai,Miao, ChunPing,Li, XiaoLan. 2013

[16]Haplotype, molecular marker and phenotype effects associated with mineral nutrient and grain size traits of TaGS1 a in wheat. Guo, Ying,Sun, Jinjie,Zhang, Guizhi,Wang, Yingying,Kong, Fanmei,Zhao, Yan,Li, Sishen,Guo, Ying,Wang, Yingying. 2013

[17]Regulatory Role of OsMADS34 in the Determination of Glumes Fate, Grain Yield, and Quality in Rice. Ren, Deyong,Rao, Yuchun,Leng, Yujia,Li, Zizhuang,Xu, Qiankun,Wu, Liwen,Qiu, Zhennan,Zeng, Dali,Hu, Jiang,Zhang, Guangheng,Zhu, Li,Gao, Zhenyu,Chen, Guang,Dong, Guojun,Guo, Longbiao,Qian, Qian,Rao, Yuchun,Li, Zizhuang,Xue, Dawei. 2016

[18]TaGW2, a Good Reflection of Wheat Polyploidization and Evolution. Qin, Lin,Zhang, Xueyong,Qin, Lin,Zhang, Xueyong,Qin, Lin,Zhao, Junjie,Li, Tian,Hou, Jian,Zhang, Xueyong,Hao, Chenyang. 2017

[19]The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Chen, SB,Zhu, YG,Ma, YB.

[20]Dissection of qTGW1.2 to three QTLs for grain weight and grain size in rice (Oryza sativa L.). Wang, Lin-Lin,Chen, Yu-Yu,Guo, Liang,Zhang, Hong-Wei,Fan, Ye-Yang,Zhuang, Jie-Yun,Wang, Lin-Lin,Chen, Yu-Yu,Guo, Liang,Zhang, Hong-Wei,Fan, Ye-Yang,Zhuang, Jie-Yun.

作者其他论文 更多>>