Orchestration of ethylene and gibberellin signals determines primary root elongation in rice
文献类型: 外文期刊
第一作者: Qin, Hua
作者: Qin, Hua;Li, Yuxiang;Wang, Juan;Quan, Ruidang;Zhou, Jiahao;Huang, Rongfeng;Pandey, Bipin K.;Bennett, Malcolm J.;Pandey, Bipin K.;Bennett, Malcolm J.;Huang, Guoqiang;Zhang, Dabing;Zhou, Yun;Miao, Yuchen;Qin, Hua;Wang, Juan;Quan, Ruidang;Huang, Rongfeng
作者机构:
期刊名称:PLANT CELL ( 影响因子:12.085; 五年影响因子:12.796 )
ISSN: 1040-4651
年卷期: 2022 年 34 卷 4 期
页码:
收录情况: SCI
摘要: Primary root growth in cereal crops is fundamental for early establishment of the seedling and grain yield. In young rice (Oryza sativa) seedlings, the primary root grows rapidly for 7-10 days after germination and then stops; however, the underlying mechanism determining primary root growth is unclear. Here, we report that the interplay of ethylene and gibberellin (GA) controls the orchestrated development of the primary root in young rice seedlings. Our analyses advance the knowledge that primary root growth is maintained by higher ethylene production, which lowers bioactive GA contents. Further investigations unraveled that ethylene signaling transcription factor ETHYLENE INSENSITIVE3-LIKE 1 (OsEIL1) activates the expression of the GA metabolism genes GIBBERELLIN 2-OXIDASE 1 (OsGA2ox1), OsGA2ox2, OsGA2ox3, and OsGA2ox5, thereby deactivating GA activity, inhibiting cell proliferation in the root meristem, and ultimately gradually inhibiting primary root growth. Mutation in OsGA2ox3 weakened ethylene-induced GA inactivation and reduced the ethylene sensitivity of the root. Genetic analysis revealed that OsGA2ox3 functions downstream of OsEIL1. Taken together, we identify a molecular pathway impacted by ethylene during primary root elongation in rice and provide insight into the coordination of ethylene and GA signals during root development and seedling establishment.
分类号:
- 相关文献
作者其他论文 更多>>
-
Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato (Solanum lycopersicum)
作者:Hu, Jiahui;Yu, Qinghui;Hu, Jiahui;Wang, Juan;Muhammad, Tayeb;Yang, Tao;Li, Ning;Yang, Haitao;Yu, Qinghui;Wang, Baike
关键词:tomato; fruit ripening; metabolome; transcriptome; carotenoids; lycopene; ethenyl
-
Comprehensive genomic characterization and expression analysis of calreticulin gene family in tomato
作者:Muhammad, Tayeb;Yang, Tao;Wang, Baike;Yang, Haitao;Wang, Juan;Yu, Qinghui;Tuerdiyusufu, Diliaremu
关键词:tomato; CRT gene family; endoplasmic reticulum; bioinformatics; abiotic stress; gene expression
-
Enantioselective Synthesis of the Active Sex Pheromone Components of the Female Lichen Moth, Lyclene dharma dharma, and Their Enantiomers
作者:Zhou, Yun;Zhang, Yueru;Fu, Xiaochen;Xie, Hongqing;Han, Jinlong;Zhang, Jianhua;Shan, Chenggang;Wang, Jianan;Zhong, Jiangchun
关键词:sex pheromone; Lyclene dharma dharma; Evans' chiral auxiliary; enantioselective synthesis
-
Long-term Application of Agricultural Amendments Regulate Hydroxyl Radicals Production during Oxygenation of Paddy Soils
作者:Chen, Ning;Huang, Danyu;Liu, Xiantang;Zhou, Dongmei;Chen, Ning;Zeng, Yu;Wu, Tongliang;Fang, Guodong;Wang, Yujun;Wang, Juan;Liu, Guangxia;Gao, Yan
关键词:agricultural amendment; hydroxyl radicals; soil aggregate fractionation, paddy soil; organic contaminantattenuation
-
Stomach as the target organ of Rickettsia heilongjiangensis infection in C57BL/6 mice identified by click chemistry
作者:Wang, Juan;Wang, Juan;Wei, Wei;Chen, Zi-Yun;Xiong, Tao;Xia, Luo-Yuan;Jiang, Jia-Fu;Zhu, Dai-Yun;Jia, Na;Cao, Wu-Chun;Du, Li-Feng;Zhang, Ming-Zhu;Xia, Luo-Yuan;Chen, Zi-Yun;Zhang, Xu;Li, Wen-Jun;Wang, Zhen-Fei
关键词:
-
Ethylene Modulates Rice Root Plasticity under Abiotic Stresses
作者:Qin, Hua;Li, Yuxiang;Huang, Rongfeng;Qin, Hua;Huang, Rongfeng;Xiao, Minggang
关键词:root development; ethylene; abiotic stress; rice
-
Q negatively regulates wheat salt tolerance through directly repressing the expression of TaSOS1 and reactive oxygen species scavenging genes
作者:Yang, Ziyi;Yang, Ruizhen;Bai, Wanqing;Chen, Wenxi;Kong, Xiuying;Qiao, Weihua;Zhang, Yunwei;Sun, Jiaqiang;Zhou, Yun
关键词:wheat; salt tolerance; reactive oxygen species; Q; TaWD40