Biocontrol activity and potential mechanism of Bacillus cereus G5 against Meloidogyne graminicola

文献类型: 外文期刊

第一作者: Ye, Shan

作者: Ye, Shan;Zhou, Siyu;Yang, Jiahao;Shi, Xuqi;Zhang, Ruoyu;Yang, Zhuhong;Ding, Zhong;Ye, Shan;Yang, Zhuhong;Ding, Zhong;Ma, Yihang;Peng, Deliang

作者机构:

关键词: Biocontrol; Meloidogyne graminicola; Nematicidal activity; Volatile organic compounds (VOCs); Fumigant activity

期刊名称:PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY ( 影响因子:4.2; 五年影响因子:4.6 )

ISSN: 0048-3575

年卷期: 2024 年 204 卷

页码:

收录情况: SCI

摘要: Root-knot nematodes (Meloidogyne spp.) are highly destructive pests that cause significant yield losses annually. Biological control of nematodes has emerged as a potential alternative in sustainable agriculture. In this study, we originally isolated Bacillus cereus G5 from the rhizosphere soil of rice (Oryza sativa). Treatment with the fermentation supernatant of G5 in vitro demonstrated high toxicity to second-stage juveniles (J2) of Meloidogyne graminicola and remarkably inhibited egg hatching. Moreover, G5 steadily colonized rhizosphere soil and rice seedlings, and exhibited excellent biocontrol efficacy against M. graminicola under greenhouse conditions. Notably, the volatile organic compounds (VOCs) produced by G5 displayed high fumigant activity against M. graminicola. The G5 VOCs efficiently reduced the gall index and nematode population in rice roots, while also promoting rice growth in double-layered pot tests. Additionally, the expression of defense genes involved in the salicylic acid (OsNPR1, OsWRKY45, OsPAL1), jasmonic acid (OsJaMYB, OsAOS2) and ethylene (OsACS1) signalling pathways was significantly upregulated in rice seedlings treated with G5 VOCs. This suggests that G5 VOCs contribute to eliciting plant defense responses. Furthermore, we identified 14 major VOCs produced by G5 using solid-phase micro-extraction gas chromatography and mass spectrometry (SPEM-GC-MS). Notably, allomatrine, morantel, 1-octen-3-ol and 3-methyl-2-butanol displayed strong contact nematicidal activity. Among these, only 1-octen-3-ol demonstrated fumigant activity against J2s of M. graminicola, with an LC50 value of 758.95 mg/L at 24 h. Overall, these results indicated that the B. cereus G5 and its synthetic VOCs possess high potential as biocontrol agents for managing root-knot nematodes.

分类号:

  • 相关文献
作者其他论文 更多>>