您好,欢迎访问北京市农林科学院 机构知识库!

基于图像纹理特征的养殖鱼群摄食活动强度评估

文献类型: 中文期刊

作者: 陈彩文 1 ; 杜永贵 1 ; 周超 2 ; 孙传恒 2 ;

作者机构: 1.太原理工大学信息工程学院

2.国家农业信息化工程技术研究中心

关键词: 计算机视觉;图像识别;纹理;灰度共生矩阵;鱼群面积;鱼群摄食活动强度

期刊名称: 农业工程学报

ISSN: 1002-6819

年卷期: 2017 年 33 卷 05 期

页码: 232-237

收录情况: EI ; 北大核心 ; CSCD

摘要: 为了解决循环水养殖中的投喂难题,该文以镜鲤为试验对象,基于计算机视觉技术,提出了一种通过分析鱼群的纹理来评估鱼群摄食活动强度的方法。首先利用均值背景建模重建出没有鱼群的背景图片,提取出目标鱼群,使用灰度共生矩阵对逆差矩、相关性、能量和对比度这4个纹理特征进行分析,得到鱼群的摄食活动强度。试验结果表明通过鱼群纹理的对比度与传统方法面积法得到的鱼群摄食活动强度,其线性决定系数可达0.894 2,说明该方法可以用来表征鱼群的摄食活动强度,研究结果为鱼群的摄食活性强度测量提供了一种参考方法。

  • 相关文献

[1]基于双贝赛尔曲线定位的树木枝干可视化建模. 王功明,郭新宇,赵春江,王纪华. 2008

[2]计算机视觉技术在植物根系形态研究中的应用. 杨国梁,张光年,葛庆平,郭新宇. 2006

[3]基于主成分分析及LVQ神经网络的番茄种子品种识别. 赵学观,王秀,李翠玲,高原源,王松林,冯青春. 2017

[4]基于计算机视觉的玉米籽粒形态测量. 王传宇,郭新宇,温维亮,苗腾. 2011

[5]基于支持向量机的鱼群摄食行为识别技术. 陈彩文,杜永贵,周超,孙传恒. 2018

[6]基于计算机视觉的植物行为感知研究综述. 祁卫宇,王传宇,郭新宇. 2017

[7]计算机视觉技术在作物形态测量中的应用. 徐歆恺,郭楠,葛庆平,郭新宇. 2006

[8]计算机视觉技术在植物根系形态研究中的应用. 杨国梁,郭新宇,张光年,葛庆平. 2005

[9]基于块标记的田间叶片损伤区域分割方法. 张水发,王开义,祖琴,黄姗,潘守慧,王志彬,李明远. 2014

[10]基于DRGB的运动中肉牛形体部位识别. 邓寒冰,许童羽,周云成,苗腾,张聿博,徐静,金莉,陈春玲. 2018

[11]高光谱成像技术和主成分分析识别玉米籽粒的胚(英文). 黄文倩,李江波,张驰,张保华,张百海. 2012

[12]红外传感器与机器视觉融合的果树害虫识别及计数方法. 田冉,陈梅香,董大明,李文勇,矫雷子,王以忠,李明,孙传恒,杨信廷. 2016

[13]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

[14]基于迁移学习和金字塔卷积网络的河蟹个体图像识别方法研究. 冯裕清,杨信廷,徐大明,罗娜,陈枫,孙传恒. 2022

[15]一种谷粒粒形参数的高通量智能检测方法. 吴建伟,明博,卢大文,杨宝祝. 2015

[16]基于Faster R-CNN的美国白蛾图像识别模型研究. 薛大暄,张瑞瑞,陈立平,陈梅香,徐刚. 2020

[17]多结构参数集成学习的设施黄瓜病害智能诊断. 高荣华,李奇峰,孙想,顾静秋,彭程. 2020

[18]畜禽疫病智能防控技术发展现状与展望. 蒋瑞祥,余礼根,丁露雨,高荣华,马为红,李奇峰,崔晓东. 2020

[19]改进Multi-scale ResNet的蔬菜叶部病害识别. 王春山,周冀,吴华瑞,滕桂法,赵春江,李久熙. 2020

[20]采用组合增强的YOLOX-ViT协同识别温室内番茄花果. 吕志远,张付杰,魏晓明,黄媛,李晶晶,张钟莉莉. 2023

作者其他论文 更多>>