您好,欢迎访问北京市农林科学院 机构知识库!

基于叶片光谱分析的小麦白粉病与条锈病区分及病情反演研究

文献类型: 中文期刊

作者: 袁琳 1 ; 张竞成 1 ; 赵晋陵 1 ; 黄文江 2 ; 王纪华 1 ;

作者机构: 1.浙江大学农业遥感与信息技术应用研究所

2.中国科学院对地观测与数字地球科学中心

关键词: 高光谱;条锈病;白粉病;费氏线性判别分析;偏最小二乘回归分析

期刊名称: 光谱学与光谱分析

ISSN: 1000-0593

年卷期: 2013 年 33 卷 06 期

页码: 1608-1614

收录情况: EI ; SCI ; 北大核心 ; CSCD

摘要: 小麦条锈病和白粉病作为我国麦区两种重要病害,在田间常同时发生,为病害防治管理带来困难。基于实验测试获得白粉病、条锈病叶片光谱数据,探讨采用光谱分析对两种病害进行区分识别及严重度监测的可行性。通过相关分析和独立T检验,筛选出对白粉病和条锈病敏感度差异较显著的波段及光谱特征,包括665~684,718~726nm等6个波段范围,以及DEP550-770,SIWSI等11个光谱特征。基于这些波段和特征,采用FLDA构建病害判别模型;借助PLSR分析构建病情严重度反演模型。研究结果表明,筛选得到的反射率波段和光谱特征能够较好地区分两种病害,判别模型总体精度达到80%以上,准确度较高。其中,染病比率超过20%的病叶区分和识别精度可达95%。同时,分别基于两种病害敏感光谱特征构建的病情严重度反演模型能够较好地估测病情严重度,两种病害估测均方根误差均低于15%。上述叶片尺度小麦白粉病和条锈病区分和严重度反演模型为进一步研究两种病害冠层尺度的区分和监测提供基础。

  • 相关文献

[1]基于氮素叶绿素关系的冬小麦籽粒蛋白质含量高光谱反演. 王妍,徐新刚,郭文善,王芊,谭昌伟,李存军. 2013

[2]指示冬小麦条锈病严重度的两个新的红边参数. 王圆圆,陈云浩,李京,黄文江. 2007

[3]冬小麦条锈病的光谱特征及遥感监测. 王纪华,黄文江,黄义德,赵春江,万安民. 2003

[4]冬小麦条锈病生理变化及其遥感机理. 黄义德,黄文江,刘良云,王纪华,万安民. 2004

[5]利用高光谱微分指数进行冬小麦条锈病病情的诊断研究. 蒋金豹,陈云浩,黄文江. 2007

[6]冬小麦条锈病害与常规胁迫的定量化识别研究——高光谱应用. 罗菊花,黄文江,韦朝领,黄木易,陈云浩,王纪华. 2008

[7]条锈病胁迫下冬小麦冠层叶片氮素含量的高光谱估测模型. 蒋金豹,陈云浩,黄文江,李京. 2008

[8]冬小麦白粉病冠层光谱特征解析与病情指数反演. 范友波,顾晓鹤,王双亭,杨贵军,王磊,王立志,陈召霞. 2017

[9]基于小波特征的小麦白粉病与条锈病的定量识别. 鲁军景,黄文江,张竞成,蒋金豹. 2016

[10]冬小麦病害与产量损失的多时相遥感监测. 刘良云,宋晓宇,李存军,齐腊,黄文江,王纪华. 2009

[11]基于方向一致性特征的小麦条锈病与白粉病识别方法. 郭青,王骊雯,董方敏,聂臣巍,孙水发,王纪华. 2015

[12]用神经网络和高光谱植被指数估算小麦生物量. 王大成,王纪华,靳宁,王芊,李存军,黄敬峰,王渊,黄芳. 2008

[13]冬小麦冻害胁迫高光谱分析与冻害严重度反演. 王慧芳,王纪华,董莹莹,顾晓鹤,霍治国. 2014

[14]不同条件下夏玉米冠层反射光谱响应特性的研究. 谭昌伟,郭文善,朱新开,李春燕,王纪华. 2008

[15]不同氮素营养条件下的冬小麦生理及光谱特性. 景娟娟,王纪华,王锦地,刘良云,黄文江,赵春江. 2003

[16]不同尺度冬小麦氮素遥感监测方法及其应用研究. 鲍艳松,王纪华,刘良云,李小文,李翔,黄文江,唐怡. 2007

[17]利用高光谱红边与黄边位置距离识别小麦条锈病. 蒋金豹,陈云浩,黄文江. 2010

[18]不同氮素水平下超高产夏玉米冠层的高光谱特征. 陈国庆,齐文增,李振,王纪华,董树亭,张吉旺,刘鹏. 2010

[19]用神经网络和高光谱植被指数估算小麦生物量. 王大成,王纪华,靳宁,王芊,李存军,黄敬峰,王渊,黄芳. 2008

[20]基于EFAST方法的苹果叶片叶绿素含量估算. 杨福芹,沙从术,冯海宽,韩瑞芳,徐平. 2017

作者其他论文 更多>>