您好,欢迎访问北京市农林科学院 机构知识库!

基于多尺度和注意力机制的番茄病害识别方法

文献类型: 中文期刊

作者: 张宁 1 ; 吴华瑞 2 ; 韩笑 2 ; 缪祎晟 2 ;

作者机构: 1.北京农学院计算机与信息工程学院

2.国家农业信息化工程技术研究中心

关键词: 番茄;多尺度卷积;注意力机制;迁移学习;病害识别

期刊名称: 浙江农业学报

ISSN: 1004-1524

年卷期: 2021 年 007 期

页码: 1329-1338

收录情况: 北大核心 ; CSCD

摘要: 番茄病害的及时发现与治理有助于提高番茄产量与质量,增加农户经济收益。利用物联网和人工智能可以无损害有效检测番茄病害,该研究提出了一种改进的AT-InceptionV3(Attention-InceptionV3)神经网络番茄叶部病害检测模型,该网络以InceptionV3为主干网络,结合多尺度卷积和注意力机制CBAM(convolutional block attention module, CBAM)模块,增强了病害信息表达并抑制无关信息干扰;同时引入迁移学习,防止样本数据量较少时出现过拟合的情况。为了评价优化模型的有效性,在Plant Village公开番茄病害数据集上进行了实验仿真测试。改进的模型在测试阶段对番茄健康叶片、细菌性斑疹病、晚疫病、叶霉病和黄曲病5种番茄常见叶片图像分类准确率达到98.4%,优化效果显著。为了进一步验证该方法在不同物联网中的普适性,实验对比了模型对不同分辨率病害图像的分类效果,结果表明,图像精度部分损失不会降低病害分类准确率。该模型能够为番茄温室智能网络决策判断提供重要依据。

  • 相关文献

[1]基于注意力机制和多尺度残差网络的农作物病害识别. 黄林生,罗耀武,杨小冬,杨贵军,王道勇. 2021

[2]基于可见光谱和改进注意力的农作物病害识别. 孙文斌,王荣,高荣华,李奇峰,吴华瑞,冯璐. 2022

[3]基于复杂环境的番茄叶部图像病虫害识别. 杨英茹,吴华瑞,张燕,朱华吉,李瑜玲,田国英. 2021

[4]设施温室影像采集与环境监测机器人系统设计及应用. 郭威,吴华瑞,朱华吉. 2020

[5]基于注意力机制与EfficientNet的轻量化水稻病害识别方法. 卫雅娜,王志彬,乔晓军,赵春江. 2022

[6]基于迁移学习和金字塔卷积网络的河蟹个体图像识别方法研究. 冯裕清,杨信廷,徐大明,罗娜,陈枫,孙传恒. 2022

[7]小样本目标检测研究综述. 刘春磊,陈天恩,王聪,姜舒文,陈栋. 2023

[8]基于高光谱和深度学习的水稻秸秆覆盖度遥感估算. 岳继博,李婷,宋洁,田庆久,刘杨,冯海宽. 2024

[9]改进YOLOv4的温室环境下草莓生育期识别方法. 龙洁花,郭文忠,林森,文朝武,张宇,赵春江. 2021

[10]融合注意力机制的开集猪脸识别方法. 王荣,高荣华,李奇峰,刘上豪,于沁杨,冯璐. 2023

[11]基于改进YOLO v5的复杂环境下桑树枝干识别定位方法. 李丽,卢世博,任浩,徐刚,周永忠. 2024

[12]基于Attention_DenseCNN的水稻问答系统问句分类. 王郝日钦,吴华瑞,冯帅,刘志超,许童羽. 2021

[13]基于注意力机制及多尺度特征融合的番茄叶片缺素图像分类方法. 韩旭,赵春江,吴华瑞,朱华吉,张燕. 2021

[14]基于注意力机制的农业文本命名实体识别. 赵鹏飞,赵春江,吴华瑞,王维. 2021

[15]基于改进UperNet的结球甘蓝叶球识别方法. 朱轶萍,吴华瑞,郭旺,吴小燕. 2024

[16]基于改进YOLOV5s网络的奶牛多尺度行为识别方法. 白强,高荣华,赵春江,李奇峰,王荣,李书琴. 2022

[17]基于改进YOLOv4算法的番茄叶部病害识别方法. 储鑫,李祥,罗斌,王晓冬,黄硕. 2023

[18]基于YOLOX的穴盘甘蓝病害检测方法. 马驰,吴华瑞,于会山. 2023

[19]复杂场景下害虫目标检测算法:YOLOv8-Extend. 张荣华,白雪,樊江川. 2024

[20]基于改进边界匹配网络的鱼群摄食动作时序检测方法研究. 王丁弘,杨信廷,潘良,朱文韬,焦冬祥,周超. 2023

作者其他论文 更多>>