您好,欢迎访问北京市农林科学院 机构知识库!

基于多语义特征的农业短文本匹配技术

文献类型: 中文期刊

作者: 金宁 1 ; 赵春江 1 ; 吴华瑞 1 ; 缪祎晟 1 ; 王海琛 1 ; 杨宝祝 1 ;

作者机构: 1.沈阳农业大学信息与电气工程学院;沈阳建筑大学研究生院;国家农业信息化工程技术研究中心;北京农业信息技术研究中心;沈阳建筑大学信息与控制工程学院

关键词: 农业短文本匹配;多语义特征;词语共现;双向长短期记忆网络;卷积神经网络

期刊名称: 农业机械学报

ISSN: 1000-1298

年卷期: 2022 年 05 期

页码: 325-331

收录情况: EI ; 北大核心 ; CSCD

摘要: “中国农技推广APP”农业问答社区存在提问数据量大、规范性差、涉及面广、噪声多、特征稀疏等影响文本语义匹配的问题,为了改善农业提问数据相似性判断的性能,提出了融合多语义特征的文本匹配模型Co_BiLSTM_CNN,从深度语义、词语共现、最大匹配度3个层面提取短文本特征,并利用共享参数的孪生网络结构,分别运用双向长短期记忆网络、卷积神经网络和密集连接网络构建文本匹配模型。试验结果表明,该模型可以更全面提取文本特征,文本相似性判断的正确率达94.15%,与其他6种模型相比,文本匹配效果优势明显。

  • 相关文献

[1]基于特征增强的多方位农业问句语义匹配. 王奥,吴华瑞,朱华吉. 2023

[2]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

[3]基于Faster R-CNN网络的茶叶嫩芽检测. 朱红春,李旭,孟炀,杨海滨,徐泽,李振海. 2022

[4]基于卷积模型的农业问答语性特征抽取分析. 张明岳,吴华瑞,朱华吉. 2018

[5]基于注意力机制及多尺度特征融合的番茄叶片缺素图像分类方法. 韩旭,赵春江,吴华瑞,朱华吉,张燕. 2021

[6]基于紫外-可见光谱与深度学习CNN算法的水质COD预测模型研究. 贾文珅,张恒之,马洁,梁刚,王纪华,刘鑫. 2020

[7]基于CNN的作物分类识别图像获取平台研究进展. 张倩,王明,于峰,陶震宇,张辉,李刚. 2024

[8]基于多模态数据驱动的黄瓜温室湿度预测方法. 黄天艺,吴华瑞,朱华吉. 2023

[9]基于卷积神经网络的田间麦穗检测方法研究. 张合涛,赵春江,王传宇,郭新宇,李大壮,苟文博. 2023

[10]基于深度学习的杂草识别方法研究进展. 付豪,赵学观,翟长远,郑康,郑申玉,王秀. 2023

[11]基于脸部RGB-D图像的牛只个体识别方法. 刘世锋,常蕊,李斌,卫勇,王海峰,贾楠. 2023

[12]基于CNN-GRU的菇房多点温湿度预测方法研究. 赵全明,宋子涛,李奇峰,郑文刚,刘宇,张钟莉莉. 2020

[13]基于卷积神经网络的生菜多光谱图像分割与配准. 黄林生,邵松,卢宪菊,郭新宇,樊江川. 2021

[14]卷积神经网络及其在田间杂草管理中应用的研究进展. 张金梦,张倩,王明,谭雅蓉,陶震宇,于金莹. 2024

作者其他论文 更多>>