您好,欢迎访问北京市农林科学院 机构知识库!

基于Sentinel-2时序数据的广东省英德市茶园分类研究

文献类型: 中文期刊

作者: 陈盼盼 1 ; 任艳敏 1 ; 赵春江 1 ; 李存军 1 ; 刘玉 1 ;

作者机构: 1.北京市农林科学院信息技术研究中心

关键词: 茶园;Sentinel-2;时序特征;机器学习;分类

期刊名称: 光谱学与光谱分析

ISSN: 1000-0593

年卷期: 2024 年 44 卷 004 期

页码: 1136-1143

收录情况: EI ; SCI ; 北大核心 ; CSCD

摘要: 茶叶是一种高附加值的经济作物,是我国南方山区乡村振兴的主要抓手.由于毁林种茶等破坏行为,导致森林资源破坏并引发水土流失等生态环境问题.快速准确获取茶园的空间分布对于政府监管和茶叶产业的规划发展至关重要.由于研究区天气多阴雨,茶园分布较为分散,与森林等植被光谱较为接近等原因,导致基于卫星影像提取茶园挑战性较大.为了摸清英德市的茶园空间分布,系统分析了中高分辨率的多光谱Sentinel-2影像数据,结合多时序多特征信息在茶园提取中的应用潜力.以英德市全境为研究区,选用2019年—2021年的9期Sentinel-2影像数据,详细分析了茶树生长的物候特征,进一步探究了茶园和其他地类在多时序中的特征变化,采用Relief算法对所有特征进行重要性排序.根据特征排序结果,选取特征权重值加权90%的特征因子,即7个植被指数特征和2个纹理特征,通过不同的组合排序构建了 9种茶园分类场景,采用RF算法对所有分类场景进行精度评价,选取最佳分类场景,进一步探讨了 RF分类算法和SVM分类算法对茶园提取的可行性.结果表明:(1)在进行英德市茶园提取时,2月和10月是采用多时相构造茶园多特征的最佳组合,可能因2月茶树处于萌芽期长出部分嫩绿的新叶易于和森林植被区分且在10月前后由于茶园进行了修剪其特征也较明显,因此两时相特征融合易于区分茶园.(2)RF分类方法与SVM分类方法相比,后者的精度较高,其总体精度达到91.56%,Kappa系数为0.89,生产者精度和用户精度分别为80.22%和84.56%.该研究为快速高效获取英德市茶园空间分布信息提供了一种高效的方法,同时为政府在进行茶叶产业规划、管理提供了数据支持.

  • 相关文献

[1]北京市城乡转型与乡村地域功能的时序特征及其关联性. 唐林楠,刘玉,唐秀美. 2016

[2]基于特征优选随机森林算法的农耕区土地利用分类. 王李娟,孔钰如,杨小冬,徐艺,梁亮,王树果. 2020

[3]基于时序Sentinel-2影像的现代农业园区作物分类研究. 张东彦,戴震,徐新刚,杨贵军,孟炀,冯海宽,洪琪,姜飞. 2021

[4]融合时序Sentinel数据多特征优选的南方丘陵区油茶种植区提取. 李恒凯,王洁,周艳兵,龙北平. 2024

[5]融合多环境参数的鸡粪氨气排放预测模型研究. 丁露雨,吕阳,李奇峰,王朝元,余礼根,宗伟勋. 2022

[6]基于改进的WOA-LSSVM樱桃番茄内部品质检测方法研究. 康明月,王成,孙鸿雁,李作麟,罗斌. 2023

[7]激光诱导击穿光谱结合化学计量学的淫羊藿产地快速鉴别. 罗雅文,董大明. 2023

[8]广东省农业发展优势度综合评价方法及其空间特征研究. 刘玉,孟超,蔡玉梅,路磊,唐林楠. 2021

[9]基于LDA_SVM的小麦质地检测方法研究. 赵薇,赵雪妮,康凯,刘长斌,罗斌,张晗. 2023

[10]农业大模型:关键技术、应用分析与发展方向. 郭旺,杨雨森,吴华瑞,朱华吉,缪祎晟,顾静秋. 2024

[11]基于Bayesian-XGBoost的生菜作物系数估算方法. 高海荣,张钟莉莉,岳焕芳,张馨,郭瑞,李志伟. 2022

[12]利用便捷式可见-近红外光谱仪和机器学习分辨霉变小麦及霉变程度. 贾文珅,吕浩林,张上,秦英栋,周巍. 2024

[13]基于CNN的作物分类识别图像获取平台研究进展. 张倩,王明,于峰,陶震宇,张辉,李刚. 2024

[14]无人机观测时间对玉米冠层叶绿素密度估算的影响. 周丽丽,冯海宽,聂臣巍,许晓斌,刘媛,孟麟,薛贝贝,明博,梁齐云,苏涛,金秀良. 2024

[15]基于多层级特征筛选和无人机影像的冬小麦植株氮含量预测. 郭燕,王来刚,贺佳,井宇航,宋晓宇,张彦,刘婷. 2024

[16]融合无人机多源传感器的马铃薯叶绿素含量估算. 边明博,马彦鹏,樊意广,陈志超,杨贵军,冯海宽. 2023

[17]基于XGBoost的土壤含水量传感器温度补偿模型研究. 沈欣,吴勇,孟范玉,张赓,于景鑫,史凯丽. 2021

[18]基于机器视觉和穿戴式设备感知的村镇老年人跌倒监测方法. 邓颖,吴华瑞,孙想. 2021

[19]高光谱成像技术在水果品质无损检测中的研究进展. 陈龙跃,段丹丹,王凡,孟翔宇,赵冲,钱英军. 2023

[20]基于卷积网络的苹果病变图像识别方法. 王细萍,黄婷,谭文学,吴华瑞,孙闯. 2015

作者其他论文 更多>>