您好,欢迎访问浙江省农业科学院 机构知识库!

Metabolomic profiles in serum uncover novel biomarkers in children with Williams-Beuren syndrome

文献类型: 外文期刊

作者: Bai, Guannan 1 ; Chen, Weijun 1 ; Ji, Chai 1 ; Yang, Yang 2 ; Shen, Jiyang 1 ; Li, Fangfang 1 ; Wen, Yang 4 ; Tan, Danny Junyi 5 ; Jiang, Xiaoling 1 ; Xiao, Yingping 4 ; Chen, Jinluan 6 ;

作者机构: 1.Zhejiang Univ, Childrens Hosp, Natl Clin Res Ctr Child Hlth, Dept Child Hlth Care,Sch Med, Hangzhou 310052, Zhejiang, Peoples R China

2.Yunnan Prov Key Lab Publ Hlth & Biosafety, Kunming, Yunnan, Peoples R China

3.Sch Publ Hlth, Kunming, Yunnan, Peoples R China

4.Zhejiang Acad Agr Sci, Inst Agroprod Safety & Nutr, State Key Lab Managing Biot & Chem Threats Qual &, Hangzhou, Peoples R China

5.Westminster Sch, 17A Deans Yard, London SW1P 3PF, England

6.Univ Med Ctr Rotterdam, Erasmus MC, Dept Internal Med, Rotterdam, Netherlands

关键词: Williams-Beuren syndrome; Untargeted metabolomics; Serotonin; Tryptophan; Retrograde endocannabinoid signaling; Bile acids

期刊名称:SCIENTIFIC REPORTS ( 影响因子:3.9; 五年影响因子:4.3 )

ISSN: 2045-2322

年卷期: 2025 年 15 卷 1 期

页码:

收录情况: SCI

摘要: Williams-Beuren syndrome (WBS, OMIM-no.194050) is a rare congenital genetic disorder primarily marked by developmental delays and cardiovascular anomalies, with potential involvement of metabolic dysregulation. Despite this, the metabolic features of WBS have not been extensively studied. Thus, our objective was to examine the serum metabolome profile in children with WBS, elucidating metabolic changes and associated pathways in the disorder. We recruited 25 children with WBS (mean age 5.0 +/- 2.6 years, 40% female) from the Children's Hospital affiliated to Zhejiang University between 2020 and 2023. An age and sex matched healthy control group (N = 25) were recruited from the Health Management Center in the same hospital. Clinical information of WBS were extracted from the medical records. Blood samples were obtained for untargeted metabolomics analysis using UPLC-MS/MS. The metabolomic profiles of WBS patients were compared to those of healthy controls to identify metabolites with differential abundance. Enrichment analysis was conducted to identify potentially impacted KEGG pathways. Associations between metabolites and phenotypes were evaluated. Children with WBS exhibited a unique metabolic profile compared to healthy controls, as evidenced by the identification of 465 untargeted metabolites in serum. Of these metabolites, 169 showed differential abundance in WBS children. The top enriched KEGG pathways in WBS children included nicotine addiction, cholesterol metabolism, arginine biosynthesis, retrograde endocannabinoid signaling. Additionally, there were indications of potential metabolic alterations in the l-tryptophan pathway, with a shift from serotonin to l-kynurenine, as well as disruptions in bile acid metabolism. Metabolome data in children with WBS showed neurological and amino acid metabolism changes, indicating multisystem involvement and developmental delay. This data can help monitor and manage the disease, but further studies are needed to understand the underlying mechanisms and consequences.

  • 相关文献
作者其他论文 更多>>