Chitin amendments eliminate the negative impacts of continuous cropping obstacles on soil properties and microbial assemblage
文献类型: 外文期刊
作者: Fan, Yanli 1 ; Liu, Junjie 1 ; Liu, Zhuxiu 1 ; Hu, Xiaojing 1 ; Yu, Zhenhua 1 ; Li, Yansheng 1 ; Chen, Xueli 3 ; Li, Lujun 1 ; Jin, Jian 1 ; Wang, Guanghua 1 ;
作者机构: 1.Chinese Acad Sci, Northeast Inst Geog & Agroecol, Key Lab Mollisols Agroecol, Harbin, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Heilongjiang Acad Agr Sci, Heilongjiang Acad Black Soil Conservat & Utilizat, Harbin, Peoples R China
关键词: continuous cropping; pure and crude chitin; soil pH; potential plant pathogens; specific disease suppression
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:6.627; 五年影响因子:7.255 )
ISSN: 1664-462X
年卷期: 2022 年 13 卷
页码:
收录情况: SCI
摘要: Continuous cropping of soybean leads to soil environment deterioration and soil-borne disease exacerbation, which in turn limits the sustainability of agricultural production. Chitin amendments are considered promising methods for alleviating soybean continuous cropping obstacles; however, the underlying mechanisms of soil sickness reduction remain unclear. In this study, soil amendments with pure and crude chitin at different addition dosages were employed to treat diseased soil induced by continuous cropping of soybean for five years. Chitin amendments, especially crude chitin, remarkably increased soil pH, available phosphorus (AP), potassium (AK) and nitrate nitrogen ( NO3--N) contents, and improved soybean plant growth and soil microbial activities (FDA). Additionally, chitin application significantly enriched the relative abundances of the potential biocontrol bacteria Sphingomonas, Streptomyces, and Bacillus and the fungi Mortierella, Purpureocillium, and Metarhizium while depleted those of the potential plant pathogens Fusarium, Cylindrocarpon and Paraphoma. Moreover, chitin amendments induced looser pathogenic subnetwork structures and less pathogenic cooperation with other connected microbial taxa in the rhizosphere soils. The structural equation model (SEM) revealed that pure and crude chitin amendments promoted soybean plant growth by indirectly regulating soil pH-mediated soil microbial activities and potentially beneficial microbes, respectively. Therefore, the reduction strategies for continuous cropping obstacles by adding pure and crude chitin were distinct; pure chitin amendments showed general disease suppression, while crude chitin exhibited specific disease suppression. Overall, chitin amendments could suppress potential plant pathogens and improve soil health, thereby promoting soybean growth, which provides new prospects for cultivation practices to control soybean continuous cropping obstacles.
- 相关文献
作者其他论文 更多>>
-
Alfalfa with Forage Crop Rotation Alleviates Continuous Alfalfa Obstacles through Regulating Soil Enzymes and Bacterial Community Structures
作者:Xu, Yanxia;Yang, Zhao;Wang, Xiaolong;Li, Shasha;Chai, Hua;Wang, Ruoding;Liu, Zhuxiu;Liu, Xiaobing;Liu, Junjie;Shen, Zhongbao;Fu, Xuepeng
关键词:alfalfa crop rotation; continuous cropping obstacles; soil chemical properties; enzyme activities; bacterial community structure
-
Predicting Soil Organic Matter, Available Nitrogen, Available Phosphorus and Available Potassium in a Black Soil Using a Nearby Hyperspectral Sensor System
作者:Wan, Shuming;Chen, Xueli;Wan, Shuming;Kempenaar, Corne;Hou, Jiaqi;Zhao, Jiangsan;Clarke, Nicholas
关键词:hyperspectral sensor; black soil; soil moisture; partial least squares regression; feature wavelength
-
Different long-term fertilization regimes affect soil protists and their top-down control on bacterial and fungal communities in Mollisols
作者:Hu, Xiaojing;Gu, Haidong;Liu, Junjie;Jin, Jian;Wang, Guanghua;Wei, Dan;Zhou, Baoku;Chen, Xueli;Zhu, Ping;Cui, Xi'an;Wei, Dan;Wang, Guanghua
关键词:Fertilization; Protistan community; Functional group; Inter-kingdom interactions; Mollisols
-
Variability in soybean yield responses to elevated atmospheric CO2: Insights from non-structural carbohydrate remobilisation during seed filling
作者:Xu, Ying;Yu, Zhenhua;Liu, Changkai;Hu, Yanfeng;Zhang, Jinyuan;Liu, Junjie;Liu, Judong;Wang, Guanghua;Liu, Xiaobing;Jin, Jian;Li, Yansheng;Chen, Xueli;Jin, Jian;Xu, Ying
关键词:Soybean; Elevated CO 2; Non-structural carbohydrate; Carbohydrate remobilisation
-
Rhizosphere-induced shift in the composition of bacterial community favors mineralization of crop residue nitrogen
作者:Xie, Zhihuang;Yu, Zhenhua;Li, Yansheng;Wang, Guanghua;Liu, Xiaobing;Liu, Junjie;Liu, Judong;Chen, Yuan;Zhang, Shaoqing;Jin, Jian;Tang, Caixian;Jin, Jian;Mathesius, Ulrike;Herbert, Stephen J.;Wu, Junjiang;Jin, Jian
关键词:N-15 labelling; Bacterial diversity; DNA sequencing; Microbial community; Microbiome; Residue-N mineralization
-
Stimulation of primed carbon under climate change corresponds with phosphorus mineralization in the rhizosphere of soybean
作者:Guo, Lili;Yu, Zhenhua;Li, Yansheng;Xie, Zhihuang;Wang, Guanghua;Liu, Junjie;Hu, Xiaojing;Liu, Xiaobing;Jin, Jian;Guo, Lili;Wu, Junjiang;Jin, Jian;Jin, Jian;Jin, Jian
关键词:Climate change; 13CO2 labeling; Priming effect; P fraction; C degradation; P functional genes
-
Metagenomic strategies uncover the soil bioavailable phosphorus improved by organic fertilization in Mollisols
作者:Hu, Xiaojing;Gu, Haidong;Liu, Junjie;Jin, Jian;Liu, Xiaobing;Wang, Guanghua;Wei, Dan;Zhou, Baoku;Chen, Xueli;Zhu, Ping;Wei, Dan
关键词:Chemical and organic fertilization; Soil phosphorus cycling; Microbial functional genes; Metagenome-assembled genomes; Mollisols