Metagenomic strategies uncover the soil bioavailable phosphorus improved by organic fertilization in Mollisols
文献类型: 外文期刊
作者: Hu, Xiaojing 1 ; Gu, Haidong 1 ; Liu, Junjie 1 ; Wei, Dan 2 ; Zhu, Ping 3 ; Cui, Xian 1 ; Zhou, Baoku 2 ; Chen, Xueli 2 ; Jin, Jian 1 ; Liu, Xiaobing 1 ; Wang, Guanghua 1 ;
作者机构: 1.Chinese Acad Sci, Northeast Inst Geog & Agroecol, State Key Lab Black Soils Conservat & Utilizat, Harbin 150081, Peoples R China
2.Heilongjiang Acad Agr Sci, Inst Soil & Fertilizer & Environm Resources, Harbin 150086, Peoples R China
3.Jilin Acad Agr Sci, Inst Agr Resource & Environm, Changchun 130033, Peoples R China; Heilongjiang Acad Agr Sci, Heihe Branch, Heihe 164300, Peoples R China
4.Beijing Acad Agr & Forestry Sci, Inst Plant Nutr & Resources, Beijing 100097, Peoples R China
关键词: Chemical and organic fertilization; Soil phosphorus cycling; Microbial functional genes; Metagenome-assembled genomes; Mollisols
期刊名称:AGRICULTURE ECOSYSTEMS & ENVIRONMENT ( 影响因子:6.6; 五年影响因子:6.7 )
ISSN: 0167-8809
年卷期: 2023 年 349 卷
页码:
收录情况: SCI
摘要: Microorganisms play essential roles in soil phosphorus (P) cycling and the regulation of P bioavailability, however, genetic information on microbial P cycling in response to nutrient inputs is largely unclear. Here, metagenomic sequencing and genome binning were used to investigate microbial functional traits under chemical and organic fertilization in three long-term field experiments across black soil region of Northeast China. The results revealed that manure amendments strongly affected microbial P cycle-related functional gene patterns, which were significantly and positively correlated with the contents of soil total P (TP) and available P (AP). Manure addition directly increased soil AP concentrations, and indirectly acted through the alterations of microbial functional genes involved in soil P cycling. Specifically, manure amendments consistently decreased abundances of phnC gene and increased gene abundances of phnP, opd, and phoN across three locations, sug-gesting the potentially inhibition of soil microbial P-uptake and transport and the promotion of soil microbial organic P-mineralization. Manure addition promoted microbial inorganic P-solubilization by enriching the ppa, gcd, and pqqC genes at two out of three locations, while chemical fertilizer (CF) addition slightly stimulated the functional gene abundances involved in microbial P-uptake and transport and P-starvation response regulation. In addition, soil AP content was negatively correlated with the phnC gene abundance but positively correlated with the gene abundances of opd and phoN. Moreover, 23 metagenome-assembled genomes (MAGs) were reconstructed covering all soil samples, all of which contained the phnC gene with the copy numbers varying from 1 to 19. Nevertheless, only bin44 had a negative correlation with soil AP (r =-0.361, P = 0.030) and could be considered as a potential indicator regulating microbial P-uptake and transport. Taken together, manure inputs positively accelerated microbial P-transformations, which was beneficial for the establishment of efficient P management strategies in sustainable-intensive agriculture.
- 相关文献
作者其他论文 更多>>
-
Influences of Long-Term Fertilization on Phosphorus Forms and Availability Within Particle-Size Fractions in a Mollisol
作者:Zhang, Jinjing;Sun, Yuanhong;Tang, Jiayi;Li, Cuilan;Zhu, Mo;Zhu, Ping
关键词:Phosphorus species; Chemical fractionation; Nuclear magnetic resonance; Enzymatic hydrolysis; Manure; Mineral fertilizers
-
Molecular Composition of Soil Organic Matter Fractions Under Long-Term Post-Agricultural Restoration Across a Large Climate Gradient
作者:Song, Fanbo;Li, Qiang;Wang, Yidong;Hu, Ning;Lou, Yilai;Zhang, Huimin;Li, Dongchu;Zhu, Ping;Gao, Hongjun;Zhang, Shuiqing;Chen, Shufeng
关键词:chemical composition; natural vegetation restoration; organo-mineral association; particulate organic matter; Py-GC/MS
-
Long-Term Fertilization Effects on Forms and Availability of Phosphorus Associated with Humic Substance Fractions in a Mollisol in Northeast China
作者:Zhang, Jinjing;Sun, Yuanhong;Yuan, Yuhan;Ma, Hongbin;Feng, Yanhui;Zhang, Zhihan;Tang, Jiayi;Li, Cuilan;Zhu, Mo;Zhu, Ping
关键词:Phosphorus; Humic acid; Humin; Nuclear magnetic resonance; Enzymatic hydrolysis; Long-term fertilization
-
Phosphorus Distribution within Aggregates in Long-Term Fertilized Black Soil: Regulatory Mechanisms of Soil Organic Matter and pH as Key Impact Factors
作者:Zhang, Naiyu;Wang, Qiong;Chen, Yanhua;Zhang, Shuxiang;Zhang, Xianmei;Zhang, Naiyu;Feng, Gu;Gao, Hongjun;Peng, Chang;Zhu, Ping
关键词:phosphorus forms; soil aggregates; long-term fertilization; soil organic carbon; soil pH
-
Different long-term fertilization regimes affect soil protists and their top-down control on bacterial and fungal communities in Mollisols
作者:Hu, Xiaojing;Gu, Haidong;Liu, Junjie;Jin, Jian;Wang, Guanghua;Wei, Dan;Zhou, Baoku;Chen, Xueli;Zhu, Ping;Cui, Xi'an;Wei, Dan;Wang, Guanghua
关键词:Fertilization; Protistan community; Functional group; Inter-kingdom interactions; Mollisols
-
Long-term Fertilizer Application Induces Changes in Carbon Storage and Distribution, and the Consequent Color of Black soil
作者:Gao, Jichao;Wang, Lichun;Gao, Hongjun;Li, Qiang;Zhang, Xiuzhi;Zhu, Ping;Peng, Chang;Jiao, Yunfei;Luo, Jiafa;Qiu, Weiwen;Xu, Lingying
关键词:Black soil; Fertilizer; Soil color; Humic substances; Soil carbon
-
Divergent chemical compositions of soil organic matter size fractions under long-term amendments across a climate gradient
作者:Song, Fanbo;Wang, Yidong;Hu, Ning;Lou, Yilai;Zhang, Huimin;Li, Dongchu;Zhu, Ping;Gao, Hongjun;Zhang, Shuiqing
关键词:N-containing compounds; Organo-mineral association; Particulate organic matter; Py-GC/MS; Soil organic matter chemistry



