Study on the Quality and Related Volatile Compounds of Beijing You- Chicken at Different Temperatures
文献类型: 外文期刊
作者: Li, Xiaohan 1 ; Zhang, Jiaran 1 ; Shi, Ge 1 ; Shi, Ce 1 ; Ji, Zengtao 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
2.Beijing Technol & Business Univ, Sch Food & Hlth, Beijing 100048, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
4.Natl Engn Lab Agri Prod Qual Traceabil, Beijing 1000971, Peoples R China
5.Beijing Univ Civil Engn & Architecture, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
关键词: Chicken; Cold storage; Electronic nose; Gas chromatography mass spectrometry (GC-MS); Volatile compounds
期刊名称:INDIAN JOURNAL OF ANIMAL RESEARCH ( 影响因子:0.427; 五年影响因子:0.528 )
ISSN: 0367-6722
年卷期: 2022 年 56 卷 9 期
页码:
收录情况: SCI
摘要: Background: Beijing You-chicken with a unique flavor and rich nutrition is an excellent local chicken breed in China. Clarifying the change of volatile odor during the storage of chicken is helpful to assist in judging the freshness of chicken. Methods: The total viable count (TVC), total volatile basic nitrogen (TVB-N), lightness value L* and thiobarbituric acid reactive rubstances (TBARS) of chicken breast were measured at 4 degrees C and 25 degrees C, respectively. And the electronic nose and gas chromatography mass spectrometry (GC-MS) technology were used to determine the changes of volatile compounds during storage. Result: Significant changes of the volatile compounds were observed on first day at 25 degrees C and the 8th day at 4 degrees C of storage, which agreed with the results evaluated by detection of physicochemical indicators. The results of this study could serve as a theoretical basis for future research on detecting changes in chicken freshness by using the electronic nose and GC-MS technology.
- 相关文献
作者其他论文 更多>>
-
Deep learning-assisted fluorescence spectroscopy for food quality and safety analysis
作者:Yuan, Yuan;Xu, Qian;Ji, Zengtao;Fan, Yanwei;Shi, Ce;Ji, Zengtao;Fan, Yanwei;Shi, Ce;Ji, Zengtao;Fan, Yanwei;Shi, Ce;Yuan, Yuan;Xu, Qian;Lyu, Jian;Ertbjerg, Per
关键词:Fluorescence spectroscopy; Limitations of machine learning; Classification and regression; Model optimization; Model performance evaluation; Application
-
2D/0D Heterojunction Fluorescent Probe with Schottky Barrier Based on Ti3C2TX MXene Loaded Graphene Quantum Dots for Detection of H2S During Food Spoilage
作者:Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Yang, Xinting;Shi, Ce;Sun, Xia;Guo, Yemin;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Zhang, Jingbin;Zhang, Jingbin;Zhang, Jiaran
关键词:fluorescent probe; graphene quantum dots; H2S contamination; heterojunction; Ti3C2Tx MXene
-
Maillard reaction enhances prebiotic potential of silver carp hydrolysates: Insights from SCFA production, microbiome, and metabolomics
作者:Dou, Peipei;Zhang, Huijuan;Mubango, Elliot;Hong, Hui;Tan, Yuqing;Luo, Yongkang;Ding, Ning;Fan, Hongbing;Shi, Ce
关键词:Silver carp hydrolysates; Maillard reaction; Prebiotic; Oligosaccharides; In-vitro fermentation; Silver carp hydrolysates; Maillard reaction; Prebiotic; Oligosaccharides; In-vitro fermentation
-
Porphyrin fluorescence imaging for real-time monitoring and visualization of the freshness of beef stored at different temperatures
作者:Liu, Huan;Zhu, Lei;Ji, Zengtao;Zhang, Min;Yang, Xinting;Liu, Huan;Zhu, Lei;Ji, Zengtao;Yang, Xinting;Zhang, Min;Liu, Huan;Ji, Zengtao;Yang, Xinting;Liu, Huan;Ji, Zengtao;Yang, Xinting
关键词:Porphyrin; Fluorescence imaging; Beef; Freshness; Visualization
-
Deep learning models with optimized fluorescence spectroscopy to advance freshness of rainbow trout predicting under nonisothermal storage conditions
作者:Fan, Yanwei;Dong, Ruize;Ji, Zengtao;Shi, Ce;Dong, Ruize;Luo, Yongkang;Tan, Yuqing;Hong, Hui;Fan, Yanwei;Fan, Yanwei;Dong, Ruize;Ji, Zengtao;Shi, Ce;Fan, Yanwei;Dong, Ruize;Ji, Zengtao;Shi, Ce;Ji, Zengtao;Shi, Ce
关键词:Excitation -emission matrices; Parallel factor analysis; Freshness prediction; Radial basis function neural network; Long short-term memory; CNN_LSTM neural network
-
An ammonia-sensitive fluorescence sensor based on polyvinyl alcohol-graphene quantum dots/halloysite nanotubes hybrid film for monitoring fish freshness
作者:Zhang, Jiaran;Yu, Jie;Yin, Hao;Yue, Yuntao;Jia, Zhixin;Shi, Ce;Jia, Zhixin;Shi, Ce;Jia, Zhixin;Shi, Ce
关键词:Graphene quantum dots; Halloysite nanotubes; ammonia; Freshness; Fluorescence film
-
A novel self-enhanced electrochemiluminescent aptamer sensor based on ternary nanocomposite PEI/RuSi-MWCNTs for the detection of profenofos residues in vegetables
作者:He, Zhenying;Liu, Wenzheng;Sun, Jiashuai;Huang, Jingcheng;Han, Jie;Li, Baoxin;Xu, Rui;Zhang, Yuhao;Hua, Jin;Guo, Yemin;Lu, Fangyuan;He, Zhenying;Shi, Ce;He, Zhenying;Liu, Wenzheng;Sun, Jiashuai;Huang, Jingcheng;Han, Jie;Li, Baoxin;Xu, Rui;Zhang, Yuhao;Hua, Jin;Guo, Yemin;Lu, Fangyuan;He, Zhenying;Liu, Wenzheng;Sun, Jiashuai;Huang, Jingcheng;Han, Jie;Li, Baoxin;Xu, Rui;Zhang, Yuhao;Hua, Jin;Guo, Yemin;Lu, Fangyuan;Wang, Haifang
关键词:Electrochemiluminescence; Ru(bpy)32+; Multi-walled carbon nanotubes; Profenofos; Aptasensor



