Functional Analysis of Zinc Finger Protein Transcription Factor ZmZFP69 Under Low-Temperature Stress at Maize Seedling Stage
文献类型: 外文期刊
作者: Li, Si-Nan 1 ; Sun, Yan 1 ; Li, Yun-Long 1 ; Sun, Ming-Hao 1 ; Li, Shu-Jun 1 ; Yin, Yue 1 ; Yu, Tao 1 ; Li, Xin 1 ; Cai, Quan 1 ; Zhang, Jian-Guo 1 ;
作者机构: 1.Heilongjiang Acad Agr Sci, Maize Res Inst, Harbin 150086, Peoples R China
关键词:
zinc finger protein;
期刊名称:PLANTS-BASEL ( 影响因子:4.1; 五年影响因子:4.5 )
ISSN: 2223-7747
年卷期: 2025 年 14 卷 14 期
页码:
收录情况: SCI
摘要: Maize (Zea mays L.) seedlings are highly susceptible to low-temperature stress, which significantly impacts maize yield and quality. A zinc finger protein transcription factor (ZmZFP69) mutant and a control (B73) maize inbred line were subjected to low-temperature treatment, and changes in the phenotypic characteristics, hormone levels, and other indicators before and after the treatment were systematically identified. Subsequently, a combined RNA-seq and DAP-seq analysis was conducted to explore the influence of ZmZFP69 on the promoters of downstream genes. Finally, the proteins interacting with ZmZFP69 were examined using InterProDesign combined with BiFC and subcellular localization. The zmzfp69 homozygous mutant maize inbred line exhibited enhanced low-temperature tolerance compared to the control. RNA-seq and DAP-seq analyses revealed that ZmZFP69 binds to the ZmAOX2 gene promoter, significantly suppressing its expression. The interaction between ZmZFP69 and the downstream protein ZmBG6 was confirmed by InterProDesign, subcellular localization, and BiFC assays. ZmZFP69 negatively regulates maize seedling low-temperature tolerance by inhibiting ZmAOX2 expression and interacting with ZmBG6.
- 相关文献
作者其他论文 更多>>
-
Genome-Wide Identification and Expression Analysis Under Abiotic Stress of the Lipoxygenase Gene Family in Maize (Zea mays)
作者:Li, Sinan;Hou, Shuai;Sun, Yuanqing;Sun, Minghao;Sun, Yan;Li, Xin;Li, Yunlong;Wang, Luyao;Cai, Quan;Guo, Baitao;Zhang, Jianguo
关键词:maize; LOX; abiotic stress; gene family; expression analysis
-
Comparative Metabolomics Analysis of Seed Composition Accumulation in Soybean (Glycine max L.) Differing in Protein and Oil Content
作者:Cui, Yifan;Wang, Zhiyang;Li, Mingyang;Wang, Sihui;Liu, Chunyan;Xin, Dawei;Qi, Zhaoming;Chen, Qingshan;Yang, Mingliang;Zhao, Ying;Li, Xin
关键词:metabolomics; seed oil; seed protein; soybean (Glycine max (Linn.) Merr.)
-
Combined effects of cropping alfalfa (Medicago sativa L.) on the soil pore structure, microbial communities and organic carbon fractions in saline soils
作者:Zhu, Dan;Sun, Lei;Mao, Lina;Yan, Bohan;Li, Bin;Li, Xin;Li, Jingyang;Li, Bin;Li, Xin
关键词:Phytoremediation; Computed tomography scanning; Organic carbon fractions; Microorganisms; Co-occurrence network
-
Integrating Genetic Diversity and Agronomic Innovations for Climate-Resilient Maize Systems
作者:Li, Xin;Li, Yunlong;Sun, Yan;Li, Sinan;Cai, Quan;Li, Shujun;Sun, Minghao;Yu, Tao;Meng, Xianglong;Zhang, Jianguo
关键词:maize; climate resilience; climatic change; genomic selection; multiomics; speed breeding; gene editing
-
Genome-wide characterization of soybean malate dehydrogenase genes reveals a positive role for GmMDH2 in the salt stress response
作者:Liu, Peiyan;Cui, Yifan;Wu, Xiaoxia;Zhao, Ying;Hu, Zhenbang;Liu, Chunyan;Zhang, Zhanguo;Yang, Mingliang;Chen, Qingshan;Li, Xin
关键词:soybean ( Glycine max (Linn.) Merr.); malate dehydrogenase; expression profile; salt stress
-
Progress in Transcriptomics and Metabolomics in Plant Responses to Abiotic Stresses
作者:Yu, Tao;Ma, Xuena;Zhang, Jianguo;Cao, Shiliang;Li, Wenyue;Yang, Gengbin;Yu, Tao;Zhang, Jianguo;Cao, Shiliang;Yu, Tao;Zhang, Jianguo;Cao, Shiliang;He, Changan
关键词:plants; abiotic stress; transcriptomics; metabolomics; progress
-
The EIN3 transcription factor GmEIL1 improves soybean resistance to Phytophthora sojae
作者:Chen, Xi;Sun, Yan;Yang, Yu;Zhao, Yuxin;Zhang, Chuanzhong;Fang, Xin;Gao, Hong;Zhao, Ming;He, Shengfu;Song, Bo;Liu, Shanshan;Xu, Pengfei;Zhang, Shuzhen;Chen, Xi;Wu, Junjiang;Zhang, Shuzhen;Xu, Pengfei;Zhang, Shuzhen;Wu, Junjiang
关键词:EIN3-binding sequence; ethylene; GmEIL1; Phytophthora root rot of soybean



