Combining multispectral and hyperspectral data to estimate nitrogen status of tea plants (Camellia sinensis (L.) O. Kuntze) under field conditions
文献类型: 外文期刊
作者: Cao, Qiong 1 ; Yang, Guijun 2 ; Duan, Dandan 2 ; Chen, Longyue 2 ; Wang, Fan 2 ; Xu, Bo 2 ; Zhao, Chunjiang 1 ; Niu, Fanfan 2 ;
作者机构: 1.Hunan Agr Univ, Coll Mech & Elect Engn, Changsha 410125, Hunan, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 10097, Peoples R China
3.Nongxin Technol Guangzhou Co Ltd, Guangzhou 511466, Peoples R China
4.Qingyuan Smart Agr & Rural Res Inst, Qingyuan 511500, Peoples R China
5.Shaoguan Nongxin Technol Co Ltd, Guangzhou 512000, Peoples R China
关键词: Multispectral imaging; Hyperspectral; Nitrogen; VCPA
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:6.757; 五年影响因子:6.817 )
ISSN: 0168-1699
年卷期: 2022 年 198 卷
页码:
收录情况: SCI
摘要: Nitrogen (N) plays a pivotal role in management of tea plantation, with significant impacts on the growth, productivity, and nutrition status of tea plants. The existing methods for N content monitoring of tea leaves are complicated and can not realize in suite and in real time way. This study proposed a method for estimating the N content of tea plants in field conditions based on a combination of a multispectral imaging system and hyperspectral data. A total of 32 parameters were extracted from five tea gardens using calibrated multispectral images of the tea plant canopy, and 27 indices were selected by Pearson correlation analysis. A total of 28 wavelengths selected by competitive adaptive reweighted sampling from hyperspectral data were combined with 27 multispectral indices as the original data. Subsequently, five variables of fused data (H, VOG, BGI, 1664 nm and 1665 nm) were selected by variable combination population analysis based on the 55 combination parameters. Partial least squares regression, random forest regression, and support vector machine regression (SVR) models all showed excellent performance for both the calibration and prediction sets. The overall results indicated that the infused data of multispectral and hyperspectral data combined with SVR are effective in monitoring the N level under field conditions, and the R-2 (coefficient of determination) and root mean square error values of the prediction were 0.9186 and 0.0560, respectively. The findings of this study are important in retaining the nutritional and quality attributes of agricultural commodities.
- 相关文献
作者其他论文 更多>>
-
Staggered-Phase Spray Control: A Method for Eliminating the Inhomogeneity of Deposition in Low-Frequency Pulse-Width Modulation (PWM) Variable Spray
作者:Zhang, Chunfeng;Zhao, Chunjiang;Zhang, Chunfeng;Zhai, Changyuan;Zhang, Meng;Zhang, Chi;Zou, Wei;Zhao, Chunjiang;Zhang, Chunfeng;Zou, Wei;Zhai, Changyuan;Zhang, Meng;Zhao, Chunjiang
关键词:precision spray; variable spray; PWM; deposition; duty cycle; frequency
-
Improving potato AGB estimation to mitigate phenological stage impacts through depth features from hyperspectral data
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Bian, Mingbo;Ma, Yanpeng;Li, Jingbo;Xu, Bo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:AGB; Hyperspectral features; Deep features; SPA; LSTM; PLSR
-
Improving potato above ground biomass estimation combining hyperspectral data and harmonic decomposition techniques
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Ma, Yanpeng;Bian, Mingbo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo
关键词:AGB; ASD; UHD185; Harmonic components; PLSR
-
A novel electrochemical sensor for in situ and in vivo detection of sugars based on boronic acid-diol recognition
作者:Liu, Ke;Xu, Tongyu;Zhao, Chunjiang;Liu, Ke;Li, Aixue;Zhao, Chunjiang
关键词:Fructose; Glucose; Electrochemical biosensor; In situ; In vivo; Artificial neural network
-
Eliminating Primacy Bias in Online Reinforcement Learning by Self-Distillation
作者:Li, Jingchen;Wu, Huarui;Zhao, Chunjiang;Shi, Haobin;Hwang, Kao-Shing
关键词:Online reinforcement learning; overfitting; reinforcement learning
-
Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat
作者:Li, Wenrui;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu
关键词:3D reconstruction; plant morphology; point cloud segmentation; Wheat
-
Hyperspectral Estimation of Chlorophyll Content in Grape Leaves Based on Fractional-Order Differentiation and Random Forest Algorithm
作者:Li, Yafeng;Xu, Xingang;Zhu, Yaohui;Xue, Hanyu;Li, Yafeng;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Yang, Xiaodong;Meng, Yang;Jiang, Xiangtai;Xue, Hanyu
关键词:different varieties of grapes; leaf chlorophyll content; hyperspectral remote sensing; data-processing; RFR