Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat
文献类型: 外文期刊
作者: Li, Wenrui 1 ; Wu, Sheng 2 ; Wen, Weiliang 2 ; Lu, Xianju 2 ; Liu, Haishen 2 ; Zhang, Minggang 2 ; Xiao, Pengliang 2 ; Guo, Xinyu 2 ; Zhao, Chunjiang 1 ;
作者机构: 1.Northwest A&F Univ, Coll Informat Engn, Xinong Rd, Xianyang 712100, Shaanxi, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Shuguang Huayuan Middle Rd, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing Key Lab Digital Plant, Shuguang Huayuan Middle Rd, Beijing 100097, Peoples R China
关键词: 3D reconstruction; plant morphology; point cloud segmentation; Wheat
期刊名称:AOB PLANTS ( 影响因子:2.6; 五年影响因子:3.0 )
ISSN: 2041-2851
年卷期: 2024 年 16 卷 2 期
页码:
收录情况: SCI
摘要: It is of great significance to study the plant morphological structure for improving crop yield and achieving efficient use of resources. Three dimensional (3D) information can more accurately describe the morphological and structural characteristics of crop plants. Automatic acquisition of 3D information is one of the key steps in plant morphological structure research. Taking wheat as the research object, we propose a point cloud data-driven 3D reconstruction method that achieves 3D structure reconstruction and plant morphology parameterization at the phytomer scale. Specifically, we use the MVS-Pheno platform to reconstruct the point cloud of wheat plants and segment organs through the deep learning algorithm. On this basis, we automatically reconstructed the 3D structure of leaves and tillers and extracted the morphological parameters of wheat. The results show that the semantic segmentation accuracy of organs is 95.2%, and the instance segmentation accuracy AP50 is 0.665. The R2 values for extracted leaf length, leaf width, leaf attachment height, stem leaf angle, tiller length, and spike length were 0.97, 0.80, 1.00, 0.95, 0.99, and 0.95, respectively. This method can significantly improve the accuracy and efficiency of 3D morphological analysis of wheat plants, providing strong technical support for research in fields such as agricultural production optimization and genetic breeding. We propose a point cloud data-driven 3D wheat reconstruction method, which achieves plant-scale 3D structure reconstruction and wheat morphological parameterization. First, we used the MVS-Pheno platform to reconstruct the 3D point cloud of wheat and then performed instance segmentation of the wheat organ point cloud based on the deep learning method. On this basis, we automatically reconstructed the 3D structure of the leaves and tillers and extracted the wheat morphological parameters. This method can significantly improve the accuracy and efficiency of 3D morphological analysis of wheat plants.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight
-
An ultra-lightweight method for individual identification of cow-back pattern images in an open image set
作者:Wang, Rong;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Wang, Rong;Zhao, Chunjiang;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Ru, Lin
关键词:Cow-back pattern; Cow recognition; LightCowsNet; Open image set; Deep learning
-
Unveiling the hidden impact: How biodegradable microplastics influence CO 2 and CH 4 emissions and Volatile Organic Compounds (VOCs) profiles in soil ecosystems
作者:Wang, Yihao;Zhao, Chunjiang;Lu, Anxiang;Dong, Daming;Gong, Wenwen;Wang, Yihao
关键词:Biodegradable microplastics; Paddy and upland soils; Greenhouse gases; Volatile Organic Compounds; Optical gas sensor