您好,欢迎访问北京市农林科学院 机构知识库!

Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space

文献类型: 外文期刊

作者: Zhang, Youming 1 ; Yang, Guijun 1 ; Thenkabail, Prasad S. 3 ; Li, Zhenhong 1 ; Wu, Wenbin 4 ; Yang, Xiaodong 2 ; Song, Xiaoyu 2 ; Long, Huiling 2 ; Liu, Miao 1 ; Zhang, Jing 1 ; Zuo, Lijun 5 ; Meng, Yang 2 ; Gao, Meiling 1 ; Zhu, Wu 1 ;

作者机构: 1.Changan Univ, Coll Geol Engn & Geomat, State Key Lab Loess Sci, Xian 710064, Peoples R China

2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R China

3.US Geol Survey USGS, Western Geog Sci Ctr, Flagstaff, AZ USA

4.Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China

5.Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China

6.Nanjing Agr Univ, Collaborat Innovat Ctr Modern Crop Prod Cosponsore, Nanjing 210095, Jiangsu, Peoples R China

关键词: Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index

期刊名称:INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION ( 影响因子:8.6; 五年影响因子:8.6 )

ISSN: 1569-8432

年卷期: 2025 年 140 卷

页码:

收录情况: SCI

摘要: Understanding the spatial and temporal distribution of irrigated cropland at the field scale is essential for managing irrigation water use and addressing the water-food nexus. While global and regional irrigation products exist, they often classify irrigated crops based on machine learning principles, where irrigated crops outperform rainfed ones. However, these methods typically lack mechanistic representation and are rarely applicable at the field scale over long time series. Additionally, identifying irrigated cropland in dual-season systems poses challenges due to temporal heterogeneity, leading to potential misclassification. To address these issues, we constructed a 3D canopy feature space including hydrothermal characteristics (1-precipitation/ P, 2-actual evapotranspiration/AET) and spectral characteristic (3-NDVI). This approach is based on two mechanisms: the impact of irrigation on water vapor cycling and its role in promoting crop growth. We introduced a novel cross-region Slope Length Index (SLI) to map irrigated and rainfed crops at the field scale. Our method involved downscaling NDVI and AET using spectral fusion techniques (STF) on Google Earth Engine (GEE), followed by fitting a robust rainfed line (AET =-125.41 + 0.84 x P, R2 = 0.70) at the provincial scale, and calculating the SLI. Then A case of irrigation map (Irri_HNP) was generated by a threshold for crop water supply and demand, achieving >= 38 % accuracy improvement on overall accuracy (OA = 0.973) compared to existing products. The SLI method also exhibited strong stability when generalized to the national scope (AET =-74.41 + 0.82 x P, R2 = 0.73), maintaining robustness in both drought and humid years (AET =-177.08 + 0.82 x P, R2 = 0.69). The method's scalability and transferability have been rigorously validated across diverse regions and environments, spanning from provincial to national scales. This validation achieved an OA of 0.922, demonstrating robust performance under heterogeneous conditions. Furthermore, the framework provides actionable insights for field-scale crop management and agricultural water governance.

  • 相关文献
作者其他论文 更多>>
  • UssNet: a spatial self-awareness algorithm for wheat lodging area detection

    作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong

    关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation

  • A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment

    作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun

    关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study

  • Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering

    作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao

    关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering

  • Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning

    作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan

    关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning

  • Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)

    作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao

    关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model

  • EasyMetagenome: A user-friendly and flexible pipeline for shotgun metagenomic analysis in microbiome research

    作者:Bai, Defeng;Xun, Jiani;Ma, Chuang;Luo, Hao;Yang, Haifei;Hou, Huiyu;Lv, Hujie;Wan, Xiulin;Wang, Yao;Yousuf, Salsabeel;Zeng, Meiyin;Zhang, Tianyuan;Gao, Yunyun;Liu, Yong-Xin;Chen, Tong;Ma, Chuang;Yang, Haifei;Cao, Chen;Cao, Xiaofeng;Cui, Jianzhou;Deng, Yuan-Ping;Deng, Zhaochao;Yu, Hao;Zhang, Chunfang;Dong, Wenxin;Dong, Wenxue;Du, Juan;Fang, Qunkai;Fang, Wei;Fang, Yue;Luan, Yaning;Fu, Fangtian;Fu, Min;Fu, Yi-Tian;Gao, He;Ge, Jingping;Guo, Yuhao;Gong, Qinglong;Lou, Wenbo;Gu, Lunda;Yang, Li;Guo, Peng;Hai, Tang;Liu, Hao;He, Jieqiang;He, Zi-Yang;Huang, Can;Ji, Shuai;Jiang, ChangHai;Jiang, Gui-Lai;Jiang, Lingjuan;Jin, Ling N.;Li, Changchao;Kan, Yuhe;Kang, Da;Kou, Jin;Lam, Ka-Lung;Li, Chong;Li, Fuyi;Li, Liwei;Li, Miao;Li, Xin;Li, Ye;Li, Zheng-Tao;Zhu, Chengshuai;Liang, Jing;Mo, Jiayuan;Lin, Yongxin;Liu, Changzhen;Liu, Danni;Zhang, Jing;Chen, Shifu;Liu, Fengqin;Liu, Jia;Liu, Tianrui;Liu, Tingting;Wang, Xinlong;Liu, Xinyuan;Luo, Yuanyuan;Liu, Yaqun;Liu, Bangyan;Liu, Minghao;Lv, Hujie;Ma, Tengfei;Mai, Zongjiong;Niu, Dongze;Pan, Zhuo;Qi, Heyuan;Shi, Zhanyao;Song, Chunjiao;Sun, Fuxiang;Sun, Yan;Tian, Sihui;Wang, Guoliang;Wang, Hongyang;Wang, Hongyu;Wang, Huanhuan;Wang, Jing;Wang, Jun;Wang, Kang;Wang, Leli;Yao, Xiaofang;Wang, Shao-kun;Xiao, Zufei;Xing, Huichun;Xu, Yifan;Yang, Song;Yan, Shu-yan;Zhang, Yi-Bo;Yang, Yuanming;Lei, Yu;Yuan, Zhengrong;Zhang, Chunge;Zhang, Huimin;Zhang, Na;Zhang, Yupeng;Zhang, Zheng;Zhou, Mingda;Zhou, Yuanping;Zhu, Zhihao;Zhu, Lin;Zhu, Yue;Zou, Hongqin;Zuo, Anna;Dong, Wenxuan;Wen, Tao;Chen, Shifu;Chen, Shifu;Li, Guoliang

    关键词:metagenome; microbiome; microbiota; pipeline; visualization

  • Retrieving the chlorophyll content of individual apple trees by reducing canopy shadow impact via a 3D radiative transfer model and UAV multispectral imagery

    作者:Zhang, Chengjian;Chen, Zhibo;Chen, Riqiang;Zhang, Wenjie;Zhang, Chengjian;Chen, Riqiang;Zhang, Wenjie;Zhao, Dan;Yang, Guijun;Xu, Bo;Feng, Haikuan;Yang, Hao

    关键词:Chlorophyll content; Shadows; Vegetation index (VI); Radiative transfer models (RTMs); Hybrid inversion model; Individual apple tree crown