A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
文献类型: 外文期刊
作者: Jia, Jiwen 1 ; Kang, Junhua 1 ; Chen, Lin 2 ; Gao, Xiang 1 ; Zhang, Borui 1 ; Yang, Guijun 1 ;
作者机构: 1.Changan Univ, Coll Geol Engn & Geomat, Xian 710054, Peoples R China
2.VISCODA GmbH, Schneiderberg 32, D-30167 Hannover, Germany
3.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R China
关键词: monocular depth estimation; CNN; vision transformer; forest environment; comparative study
期刊名称:REMOTE SENSING ( 影响因子:4.1; 五年影响因子:4.8 )
ISSN:
年卷期: 2025 年 17 卷 4 期
页码:
收录情况: SCI
摘要: Monocular depth estimation (MDE) is a critical computer vision task that enhances environmental perception in fields such as autonomous driving and robot navigation. In recent years, deep learning-based MDE methods have achieved notable progress in these fields. However, achieving robust monocular depth estimation in low-altitude forest environments remains challenging, particularly in scenes with dense and cluttered foliage, which complicates applications in environmental monitoring, agriculture, and search and rescue operations. This paper presents a comprehensive evaluation of state-of-the-art deep learning-based MDE methods on low-altitude forest datasets. The evaluated models include both self-supervised and supervised approaches, employing different network structures such as convolutional neural networks (CNNs) and Vision Transformers (ViTs). We assessed the generalization of these approaches across diverse low-altitude scenarios, specifically focusing on forested environments. A systematic set of evaluation criteria is employed, comprising traditional image-based global statistical metrics as well as geometry-aware metrics, to provide a more comprehensive evaluation of depth estimation performance. The results indicate that most Transformer-based models, such as DepthAnything and Metric3D, outperform traditional CNN-based models in complex forest environments by capturing detailed tree structures and depth discontinuities. Conversely, CNN-based models like MiDas and Adabins struggle with handling depth discontinuities and complex occlusions, yielding less detailed predictions. On the Mid-Air dataset, the Transformer-based DepthAnything demonstrates a 54.2% improvement in RMSE for the global error metric compared to the CNN-based Adabins. On the LOBDM dataset, the CNN-based MiDas has the depth edge completeness error of 93.361, while the Transformer-based Metric3D demonstrates the significantly lower error of only 5.494. These findings highlight the potential of Transformer-based approaches for monocular depth estimation in low-altitude forest environments, with implications for high-throughput plant phenotyping, environmental monitoring, and other forest-specific applications.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
Para-coumaric acid and cinnamic acid enhance resistance of Agaricus bisporus s mushrooms to Brown blotch disease caused by Pseudomonas tolaasii
作者:Shi, Zixuan;Song, Rui;Zhang, Lei;Jiang, Hanyue;Jiao, Lu;Yuan, Shuai;Meng, Demei;Zheng, Yanyan;Chen, Lin
关键词:Bacterial disease; Edible mushroom; Induced resistance; Phenolic acid; Storage
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model
-
Retrieving the chlorophyll content of individual apple trees by reducing canopy shadow impact via a 3D radiative transfer model and UAV multispectral imagery
作者:Zhang, Chengjian;Chen, Zhibo;Chen, Riqiang;Zhang, Wenjie;Zhang, Chengjian;Chen, Riqiang;Zhang, Wenjie;Zhao, Dan;Yang, Guijun;Xu, Bo;Feng, Haikuan;Yang, Hao
关键词:Chlorophyll content; Shadows; Vegetation index (VI); Radiative transfer models (RTMs); Hybrid inversion model; Individual apple tree crown



