文献类型: 外文期刊
作者: Wang, Chunshan 1 ; Zhou, Ji 1 ; Zhang, Yan 2 ; Wu, Huarui 1 ; Zhao, Chunjiang 1 ; Teng, Guifa 2 ; Li, Jiuxi 5 ;
作者机构: 1.Natl Engn Res Ctr Informat Technol Agr, Beijing, Peoples R China
2.Hebei Agr Univ, Sch Informat Sci & Technol, Baoding, Peoples R China
3.Beijing Res Ctr Informat Technol Agr, Beijing, Peoples R China
4.Hebei Key Lab Agr Big Data, Baoding, Peoples R China
5.Hebei Agr Univ, Sch Mech & Elect Engn, Baoding, Peoples R China
关键词: disease recognition; graph convolutional neural network; text recognition; robustness; fusion
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:6.627; 五年影响因子:7.255 )
ISSN: 1664-462X
年卷期: 2022 年 12 卷
页码:
收录情况: SCI
摘要: The disease image recognition models based on deep learning have achieved relative success under limited and restricted conditions, but such models are generally subjected to the shortcoming of weak robustness. The model accuracy would decrease obviously when recognizing disease images with complex backgrounds under field conditions. Moreover, most of the models based on deep learning only involve characterization learning on visual information in the image form, while the expression of other modal information rather than the image form is often ignored. The present study targeted the main invasive diseases in tomato and cucumber as the research object. Firstly, in response to the problem of weak robustness, a feature decomposition and recombination method was proposed to allow the model to learn image features at different granularities so as to accurately recognize different test images. Secondly, by extracting the disease feature words from the disease text description information composed of continuous vectors and recombining them into the disease graph structure text, the graph convolutional neural network (GCN) was then applied for feature learning. Finally, a vegetable disease recognition model based on the fusion of images and graph structure text was constructed. The results show that the recognition accuracy, precision, sensitivity, and specificity of the proposed model were 97.62, 92.81, 98.54, and 93.57%, respectively. This study improved the model robustness to a certain extent, and provides ideas and references for the research on the fusion method of image information and graph structure information in disease recognition.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
The transcription factor SlLBD40 regulates seed germination by inhibiting cell wall remodeling enzymes during endosperm weakening
作者:Zhang, Jialong;Dong, Danhui;Xu, Jiayi;Guo, Yang-Dong;Zhang, Jialong;Deng, Qilin;Zhang, Haijun;Liu, Lun;Zhang, Yan;Huang, Wei;Zhang, Haijun
关键词:
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding



