文献类型: 外文期刊
作者: Wang, Chunshan 1 ; Zhou, Ji 1 ; Zhang, Yan 2 ; Wu, Huarui 1 ; Zhao, Chunjiang 1 ; Teng, Guifa 2 ; Li, Jiuxi 5 ;
作者机构: 1.Natl Engn Res Ctr Informat Technol Agr, Beijing, Peoples R China
2.Hebei Agr Univ, Sch Informat Sci & Technol, Baoding, Peoples R China
3.Beijing Res Ctr Informat Technol Agr, Beijing, Peoples R China
4.Hebei Key Lab Agr Big Data, Baoding, Peoples R China
5.Hebei Agr Univ, Sch Mech & Elect Engn, Baoding, Peoples R China
关键词: disease recognition; graph convolutional neural network; text recognition; robustness; fusion
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:6.627; 五年影响因子:7.255 )
ISSN: 1664-462X
年卷期: 2022 年 12 卷
页码:
收录情况: SCI
摘要: The disease image recognition models based on deep learning have achieved relative success under limited and restricted conditions, but such models are generally subjected to the shortcoming of weak robustness. The model accuracy would decrease obviously when recognizing disease images with complex backgrounds under field conditions. Moreover, most of the models based on deep learning only involve characterization learning on visual information in the image form, while the expression of other modal information rather than the image form is often ignored. The present study targeted the main invasive diseases in tomato and cucumber as the research object. Firstly, in response to the problem of weak robustness, a feature decomposition and recombination method was proposed to allow the model to learn image features at different granularities so as to accurately recognize different test images. Secondly, by extracting the disease feature words from the disease text description information composed of continuous vectors and recombining them into the disease graph structure text, the graph convolutional neural network (GCN) was then applied for feature learning. Finally, a vegetable disease recognition model based on the fusion of images and graph structure text was constructed. The results show that the recognition accuracy, precision, sensitivity, and specificity of the proposed model were 97.62, 92.81, 98.54, and 93.57%, respectively. This study improved the model robustness to a certain extent, and provides ideas and references for the research on the fusion method of image information and graph structure information in disease recognition.
- 相关文献
作者其他论文 更多>>
-
Staggered-Phase Spray Control: A Method for Eliminating the Inhomogeneity of Deposition in Low-Frequency Pulse-Width Modulation (PWM) Variable Spray
作者:Zhang, Chunfeng;Zhao, Chunjiang;Zhang, Chunfeng;Zhai, Changyuan;Zhang, Meng;Zhang, Chi;Zou, Wei;Zhao, Chunjiang;Zhang, Chunfeng;Zou, Wei;Zhai, Changyuan;Zhang, Meng;Zhao, Chunjiang
关键词:precision spray; variable spray; PWM; deposition; duty cycle; frequency
-
A Cucumber Leaf Disease Severity Grading Method in Natural Environment Based on the Fusion of TRNet and U-Net
作者:Yao, Hui;Wang, Chunshan;Liu, Bo;Liang, Fangfang;Yao, Hui;Wang, Chunshan;Liu, Bo;Liang, Fangfang;Wang, Chunshan;Zhang, Lijie;Li, Jiuxi
关键词:cucumber disease; disease spot; fusion of TRNet and U-Net; two-stage segmentation framework; disease severity grading
-
A novel electrochemical sensor for in situ and in vivo detection of sugars based on boronic acid-diol recognition
作者:Liu, Ke;Xu, Tongyu;Zhao, Chunjiang;Liu, Ke;Li, Aixue;Zhao, Chunjiang
关键词:Fructose; Glucose; Electrochemical biosensor; In situ; In vivo; Artificial neural network
-
Eliminating Primacy Bias in Online Reinforcement Learning by Self-Distillation
作者:Li, Jingchen;Wu, Huarui;Zhao, Chunjiang;Shi, Haobin;Hwang, Kao-Shing
关键词:Online reinforcement learning; overfitting; reinforcement learning
-
Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat
作者:Li, Wenrui;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu
关键词:3D reconstruction; plant morphology; point cloud segmentation; Wheat
-
Dynamic Compressive Stress Relaxation Model of Tomato Fruit Based on Long Short-Term Memory Model
作者:Ru, Mengfei;Zhao, Chunjiang;Feng, Qingchun;Sun, Na;Li, Yajun;Sun, Jiahui;Li, Jianxun;Ru, Mengfei;Feng, Qingchun;Zhao, Chunjiang
关键词:tomato; stress relaxation; machine learning; LSTM
-
Energy and environmental evaluation and comparison of a diesel-electric hybrid tractor, a conventional tractor, and a hillside mini-tiller using the life cycle assessment method
作者:Liu, Wei;Yang, Rui;Li, Li;Zhao, Chunjiang;Li, Guanglin;Zhao, Chunjiang
关键词:Agricultural machinery; Electrification; Hybrid electric tractor; Environmental impact