您好,欢迎访问江苏省农业科学院 机构知识库!

Variation of Soil Microbial Community and Sterilization to Fusarium oxysporum f. sp. niveum Play Roles in Slightly Acidic Electrolyzed Water-Alleviated Watermelon Continuous Cropping Obstacle

文献类型: 外文期刊

作者: Wu, Xue 1 ; Wu, Cuinan 1 ; Lu, Daipeng 1 ; Wu, Yiwen 1 ; Ye, Zhangying 2 ; Xia, Liru 1 ; Sun, Yudong 4 ; Bao, Encai 1 ; Ye, Lin 5 ; Tang, Yuxin 1 ; Cao, Kai 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Agr Facil & Equipment, Agr Minist Key Lab Agr Engn Middle & Lower Reaches, Nanjing, Peoples R China

2.Zhejiang Univ, Sch Biosyst Engn & Food Sci, Hangzhou, Peoples R China

3.Jiangsu Univ, Sch Agr Engn, Zhenjiang, Peoples R China

4.Jiangsu Xuhuai Reg Huaiyin Inst Agr Sci, Huaian, Peoples R China

5.Ningxia Univ, Agr Coll, Yinchuan, Peoples R China

关键词: soil microbial diversity; Fusarium oxysporum f; sp; niveum; watermelon; continuous cropping obstacle; slightly acidic electrolyzed water

期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:6.064; 五年影响因子:6.843 )

ISSN:

年卷期: 2022 年 13 卷

页码:

收录情况: SCI

摘要: It is critical to exploit technologies for alleviating watermelon continuous cropping obstacle which frequently occurs and results in the limiting production and economic losses of watermelon. This study aimed to explore the effects of slightly acidic electrolyzed water (SAEW) on watermelon continuous cropping obstacles. The results showed that SAEW significantly improved the growth of watermelon seedlings cultivated in continuous cropping soil and caused a mass of changes to the diversity of the soil microbial community. Compared with Con, SAEW decreased the diversity index of bacteria by 2%, 0.48%, and 3.16%, while it increased the diversity index of fungus by 5.68%, 10.78%, and 7.54% in Shannon, Chao1, and ACE index, respectively. Besides, the enrichment level of Fusarium oxysporum f. sp. niveum (FON) was remarkably downregulated by 50.2% at 14 days of SAEW treatment, which could decrease the incidence of Fusarium wilt disease. The wet and dry weights of FON mycelia in the fluid medium were depressed more than 93%, and the number of FON colonies in continuous cropping soil was reduced by 83.56% with SAEW treatment. Additionally, a strong correlation between watermelon, FON, and SAEW was presented by correlation analysis. Furthermore, the content of endogenous reactive oxygen species (ROS) was over quadruply increased by SAEW, which may contribute to the sterilizing effect of SAEW on FON. Taken together, our findings demonstrated that exogenous SAEW could alter the soil microbial diversity and decrease the accumulation of FON, which improved the growth of watermelon seedlings and finally alleviated continuous cropping obstacles of watermelon.

  • 相关文献
作者其他论文 更多>>