Using UAV-based multispectral images and CGS-YOLO algorithm to distinguish maize seeding from weed
文献类型: 外文期刊
作者: Tang, Boyi 1 ; Zhou, Jingping 1 ; Zhao, Chunjiang 1 ; Pan, Yuchun 1 ; Lu, Yao 1 ; Liu, Chang 1 ; Ma, Kai 1 ; Sun, Xuguang 1 ; Zhang, Ruifang 4 ; Gu, Xiaohe 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
2.Northwest A&F Univ, Coll Informat Engn, Yangling 712100, Peoples R China
3.Beijing PAIDE Sci & Technol Dev Co Ltd, Beijing, Peoples R China
4.Hebei Agr Univ, Coll Land & Resources, Baoding, Peoples R China
关键词: Object detection; Maize seedlings; Weed disturbance; YOLO; UAV multispectral images
期刊名称:ARTIFICIAL INTELLIGENCE IN AGRICULTURE ( 影响因子:12.4; 五年影响因子:12.7 )
ISSN: 2097-2113
年卷期: 2025 年 15 卷 2 期
页码:
收录情况: SCI
摘要: Accurate recognition of maize seedlings on the plot scale under the disturbance of weeds is crucial for early seedling replenishment and weed removal. Currently, UAV-based maize seedling recognition depends primarily on RGB images. The main purpose of this study is to compare the performances of multispectral images and RGB images of unmanned aerial vehicle (UAV) on maize seeding recognition using deep learning algorithms. Additionally, we aim to assess the disturbance of different weed coverage on the recognition of maize seeding. Firstly, principal component analysis was used in multispectral image transformation. Secondly, by introducing the CARAFE sampling operator and a small target detection layer (SLAY), we extracted the contextual information of each pixel to retain weak features in the maize seedling image. Thirdly, the global attention mechanism (GAM) was employed to capture the features of maize seedlings using the dual attention mechanism of spatial and channel information. The CGS-YOLO algorithm was constructed and formed. Finally, we compared the performance of the improved algorithm with a series of deep learning algorithms, including YOLO v3, v5, v6 and v8. The results show that after PCA transformation, the recognition mAP of maize seedlings reaches 82.6 %, representing 3.1 percentage points improvement compared to RGB images. Compared with YOLOv8, YOLOv6, YOLOv5, and YOLOv3, the CGS-YOLO algorithm has improved mAP by 3.8, 4.2, 4.5 and 6.6 percentage points, respectively. With the increase of weed coverage, the recognition effect of maize seedlings gradually decreased. When weed coverage was more than 70 %, the mAP difference becomes significant, but CGS-YOLO still maintains a recognition mAP of 72 %. Therefore, in maize seedings recognition, UAV-based multispectral images perform better than RGB images. The application of CGS-YOLO deep learning algorithm with UAV multi-spectral images proves beneficial in the recognition of maize seedlings under weed disturbance. (c) 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
A Novel Approach for Maize Straw Type Recognition Based on UAV Imagery Integrating Height, Shape, and Spectral Information
作者:Liu, Xin;Gong, Huili;Guo, Lin;Zhou, Jingping;Gong, Huili;Guo, Lin;Gong, Huili;Guo, Lin;Gong, Huili;Guo, Lin;Gong, Huili;Guo, Lin;Gu, Xiaohe;Zhou, Jingping
关键词:maize straw type; multispectral imagery; SESI; object-oriented classification; UAV
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Monitoring the interannual dynamic changes of soil organic matter using long-term Landsat images
作者:Liu, Chang;Liu, Chang;Zhang, Chi;Chen, Wentao;Qu, Xuzhou;Tang, Boyi;Ma, Kai;Gu, Xiaohe;Sun, Qian
关键词:Soil organic matter; Remote sensing; Machine learning; Transfer learning; Spatial-temporal change



